目录

陶哲轩Analysis II(第4版)习题的参考解答及思考(第1章)

第1章

章节1.1

练习1.1.1

题目:

Prove Lemma 1.1.1.

Lemma 1.1.1的内容:

Let \( (x_n)_{n = m}^{\infty} \) be a sequence of real numbers, and let \( x \) be another real number. Then \( (x_n)_{n = m}^{\infty} \) converges to \( x \) if and only if \( \lim_{n \to \infty} d(x_n, x) = 0 \).

证明:

必要性:

如果\( (x_n)_{n = m}^{\infty} \)收敛于\( x \),则\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |x - x_n| \leq \epsilon \),特别的,有\( |d(x_n, x) - 0| = d(x_n, x) = |x - x_n| \leq \epsilon \),即\( \lim_{n \to \infty} d(x_n, x) = 0 \)。

充分性:

如果\( \lim_{n \to \infty} d(x_n, x) = 0 \),则\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |d(x_n, x) - 0| = d(x_n, x) \leq \epsilon \),而\( |x - x_n| = d(x_n, x) \leq \epsilon \),即\( (x_n)_{n = m}^{\infty} \)收敛于\( x \)。

证毕。

练习1.1.2

题目:

Show that the real line with the metric \( d(x, y) := |x - y| \) is indeed a metric space. (Hint: you may wish to review your proof of Proposition 4.3.3 from Analysis I.)

附注:

虽然定理I.4.3.3仅证明了有理数的情况,没有证明实数的情况,但是实数也满足定理I.4.3.3,这里简短点,直接使用定理I.4.3.3,而不仿照我们定理I.4.3.3的证明再证明一遍了。

证明:

证明满足条件(a)和条件(b):

条件(a)和(b)等价于\( \forall x, y \in \mathbf{R}, d(x, y) = 0 \)当且仅当\( x = y \),而由定理I.4.3.3(a),可得\( \forall x, y \in \mathbf{R}, |x - y| = 0 \)当且仅当 \( x = y \),进而可得\( d(x - y) = |x - y| = 0 \)当且仅当\( x = y \)。

证明满足条件(c):

\( \forall x \neq y \in \mathbf{R} \),由定理I.4.3.3(a),可得\( d(x, y) = |x - y| > 0 \)(因为\( x \neq y \))。

证明满足条件(d):

直接由定理I.4.3.3的(g)可得。

证毕。

练习1.1.3

题目:

Let \( X \) be a set, and let \( d: X \times X \to [0, \infty) \) be a function.

  1. Give an example of a pair \( (X, d) \) which obeys axioms (bcd) of Definition 1.1.2, but not (a). (Hint: modify the discrete metric.)
  2. Give an example of a pair \( (X, d) \) which obeys axioms (acd) of Definition 1.1.2, but not (b).
  3. Give an example of a pair \( (X, d) \) which obeys axioms (abd) of Definition 1.1.2, but not (c).
  4. Give an example of a pair \( (X, d) \) which obeys axioms (abc) of Definition 1.1.2, but not (d). (Hint: try examples where X is a finite set.)

例子1:

令\( X := \{ 1, 3, 5 \} \),定义度量函数\( d \),\( \forall x, y \in X \),如果\( x \neq y \),则令\( d(x, y) := |x - y| \),如果\( x = y \),则令\( d(x, y) := 1 \),易证\( (X, d) \)满足(bcd),但不满足(a)。

例子2:

给定任意集合\( X \),定义度量函数\( d \),\( \forall x, y \in X \),令\( d(x, y) := 0 \),易证\( (X, d) \)满足(acd),但不满足(b)。

例子3:

令\( X := \mathbf{R} \),定义度量函数\( d \),\( \forall x, y \in X \),如果\( x \geq y \),令\( d(x, y) := x - y \),如果\( x < y \),则令\( d(x, y) := 1 \),易证\( (X, d) \)满足(abd),但不满足(c)。

例子4:

令\( X := \{ 1, 3, 5 \} \),定义度量函数\( d \),\( \forall x, y \in X \),

  1. 如果\( x = y \),则令\( d(x, y) := 0 \)。
  2. 如果\( x = 1, y = 3 \)或者\( x = 3, y = 2 \),则令\( d(x, y) := 1 \)。
  3. 如果\( x = 3, y = 5 \)或者\( x = 5, y = 3 \),则令\( d(x, y) := 1 \)。
  4. 如果\( x = 1, y = 5 \)或者\( x = 5, y = 1 \),则令\( d(x, y) := 3 \)。

易证\( (X, d) \)满足(abc),但不满足(d)。

练习1.1.4

题目:

Shwo that the pair \( (Y, d|_{Y \times Y}) \) defined in Example 1.1.5 is indeed a metric space.

Example 1.1.5的内容:

Example 1.1.5 (Induced metric spaces) Let \( (X, d) \) be any metric space, and let \( Y \) be a subset of \( X \). Then we can restrict the metric function \( d : X \times X \to [0, +\infty) \) to the subset \( Y \times Y \) of \( X \times X \) to create a restricted metric function \( d|_{Y \times Y} : Y \times Y \to [0, +\infty) \) of Y ; this is known as the metric on \( Y \) induced by the metric \( d \) on \( X \). The pair \( (Y, d|_{Y \times Y}) \) is a metric space (Exercise 1.1.4) and is known the subspace of \( (X, d) \) induced by \( Y \). Thus for instance the metric on the real line in the previous example induces a metric space structure on any subset of the reals, such as the integers \( \mathbf{Z} \), or an interval \( [a, b] \).

证明:

\( \forall x \in Y \),有\( x \in X \),进而有\( d|_{Y \times Y}(x, x) = d(x, x) = 0 \),满足条件(a)。

\( \forall x, y \in Y \),有\( x \neq y \in X \),进而有\( d|_{Y \times Y}(x, y) = d(x, y) > 0 \),满足条件(b)。

\( \forall x, y \in Y \),有\( x, y \in X \),进而有\( d|_{Y \times Y}(x, y) = d(x, y) = d(y, x) = d|_{Y \times Y}(y, x) \),满足条件(c)。

\( \forall x, y, z \in Y \),有\( x, y, z \in X \),进而有\( d|_{Y \times Y}(x, y) = d(x, y) \leq d(x, y) + d(y, z) = d|_{Y \times Y}(x, y) + d|_{Y \times Y}(y, z) \),满足条件(d)。

证毕。

练习1.1.5

题目:

Let \( n \geq 1 \), and let \( a_1, a_2, \dots, a_n \) and \( b_1, b_2, \dots, b_n \) be real numbers. Verify the identity

\[ (\sum_{i = 1}^{n} a_i b_i)^2 + \dfrac{1}{2} \sum_{i = 1}^{n} \sum_{j = 1}^{n} (a_i b_j - a_j b_i)^2 = (\sum_{i = 1}^{n} a_i^2) (\sum_{j = 1}^{n} b_j^2), \]

and conclude the Cauchy-Schwarz inequality

\[ |\sum_{i = 1}^{n} a_i b_i| \leq (\sum_{i = 1}^{n} a_i^2)^{1/2} (\sum_{j = 1}^{n} b_j^2)^{1/2}. \]

Then use the Cauchy-Schwarz inequality to prove the triangle inequality

\[ (\sum_{i = 1}^{n} (a_i + b_i)^2)^{1/2} \leq (\sum_{i = 1}^{n} a_i^2)^{1/2} + (\sum_{j = 1}^{n} b_j^2)^{1/2}. \]

证明:

证明第1个等式:

使用数学归纳法证明。

当\( n = 1 \)时,等式左边\( = a_1 b_1 + \dfrac{1}{2} (a_1 b_1 - a_1 b_1)^2 = a_1 b_1 \),等式右边\( = a_1 b_1 \),左边\( = \)右边,等式成立。

归纳假设当\( n = k \)时等式成立,当\( n = k + 1 \)时,

\[ \begin{aligned} \\ \text{左边} &= (\sum_{i = 1}^{k + 1} a_i b_i)^2 + \dfrac{1}{2} \sum_{i = 1}^{k + 1} \sum_{j = 1}^{k + 1} (a_i b_j - a_j b_i)^2 \\ &= (\sum_{i = 1}^{k} a_i b_i + a_{k + 1} b_{k + 1})^2 + \dfrac{1}{2} \sum_{i = 1}^{k + 1} \sum_{j = 1}^{k + 1} (a_i b_j - a_j b_i)^2 \\ &= (\sum_{i = 1}^{k} a_i b_i)^2 + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{i = 1}^{k + 1} \sum_{j = 1}^{k + 1} (a_i b_j - a_j b_i)^2 \\ &= (\sum_{i = 1}^{k} a_i b_i)^2 + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{i = 1}^{k + 1} \sum_{j = 1}^{k} (a_i b_j - a_j b_i)^2 + \dfrac{1}{2} \sum_{i = 1}^{k + 1} (a_i b_{k + 1} - a_{k + 1} b_i)^2 \\ &= (\sum_{i = 1}^{k} a_i b_i)^2 + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{i = 1}^{k} \sum_{j = 1}^{k} (a_i b_j - a_j b_i)^2 + \dfrac{1}{2} \sum_{j = 1}^{k} (a_{k + 1} b_j - a_j b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{i = 1}^{k + 1} (a_i b_{k + 1} - a_{k + 1} b_i)^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_j^2) + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{j = 1}^{k} (a_{k + 1} b_j - a_j b_{k + 1})^2 + \dfrac{1}{2} \sum_{i = 1}^{k + 1} (a_i b_{k + 1} - a_{k + 1} b_i)^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_j^2) + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{j = 1}^{k} (a_{k + 1} b_j - a_j b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{i = 1}^{k} (a_i b_{k + 1} - a_{k + 1} b_i)^2 + \dfrac{1}{2} (a_{k + 1} b_{k + 1} - a_{k + 1} b_{k + 1})^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_j^2) + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{j = 1}^{k} (a_{k + 1} b_j - a_j b_{k + 1})^2 + \dfrac{1}{2} \sum_{i = 1}^{k} (a_i b_{k + 1} - a_{k + 1} b_i)^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_j^2) + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{j = 1}^{k} (a_{k + 1} b_j - a_j b_{k + 1})^2 + \dfrac{1}{2} \sum_{i = 1}^{k} (-1(a_{k + 1} b_i - a_i b_{k + 1}))^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_j^2) + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \dfrac{1}{2} \sum_{j = 1}^{k} (a_{k + 1} b_j - a_j b_{k + 1})^2 + \dfrac{1}{2} \sum_{i = 1}^{k} (a_{k + 1} b_i - a_i b_{k + 1})^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_j^2) + 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \sum_{j = 1}^{k} (a_{k + 1} b_j - a_j b_{k + 1})^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_j^2) + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad 2(\sum_{i = 1}^{k} a_i b_i) a_{k + 1} b_{k + 1} + \sum_{j = 1}^{k} (a_{k + 1} b_j - a_j b_{k + 1})^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_j^2) + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \sum_{i = 1}^{k} 2 a_i b_i a_{k + 1} b_{k + 1} + \sum_{i = 1}^{k} (a_{k + 1} b_i - a_i b_{k + 1})^2 \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_i^2) + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \sum_{i = 1}^{k} (2 a_i b_i a_{k + 1} b_{k + 1} + (a_{k + 1} b_i - a_i b_{k + 1})^2) \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_i^2) + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \sum_{i = 1}^{k} (2 a_i b_i a_{k + 1} b_{k + 1} + a_{k + 1}^2 b_i^2 + a_i^2 b_{k + 1}^2 - 2 a_{k + 1} b_i a_i b_{k + 1}) \\ &= (\sum_{i = 1}^{k} a_i^2) (\sum_{j = 1}^{k} b_i^2) + (a_{k + 1} b_{k + 1})^2 + \\ &\qquad \sum_{i = 1}^{k} (a_{k + 1}^2 b_i^2 + a_i^2 b_{k + 1}^2) \end{aligned} \]

我们接着展开右边,这样比较容易看出左边\( = \)右边,

\[ \begin{aligned} \\ \text{右边} &= (\sum_{i = 1}^{k + 1} a_i^2) (\sum_{j = 1}^{k + 1} b_j^2) \\ &= (\sum_{i = 1}^{k} a_i^2 + a_{k + 1}^2) (\sum_{j = 1}^{k} b_j^2 + b_{k + 1}^2) \\ &= (\sum_{i = 1}^{k} a_i^2)(\sum_{j = 1}^{k} b_j^2) + (\sum_{i = 1}^{k} a_i^2) b_{k + 1}^2 + a_{k + 1}^2(\sum_{j = 1}^{k} b_j^2) + a_{k + 1}^2 b_{k + 1}^2 \\ &= (\sum_{i = 1}^{k} a_i^2)(\sum_{j = 1}^{k} b_j^2) + (a_{k + 1} b_{k + 1})^2 + (\sum_{i = 1}^{k} a_i^2) b_{k + 1}^2 + a_{k + 1}^2(\sum_{i = 1}^{k} b_i^2) \\ &= (\sum_{i = 1}^{k} a_i^2)(\sum_{j = 1}^{k} b_j^2) + (a_{k + 1} b_{k + 1})^2 + (\sum_{i = 1}^{k} a_i^2 b_{k + 1}^2) + (\sum_{i = 1}^{k} a_{k + 1}^2 b_i^2) \\ &= (\sum_{i = 1}^{k} a_i^2)(\sum_{j = 1}^{k} b_j^2) + (a_{k + 1} b_{k + 1})^2 + (\sum_{i = 1}^{k} a_{k + 1}^2 b_i^2 + a_i^2 b_{k + 1}^2) \end{aligned} \]

综上,\( 左边 = 右边 \),故\( n = k + 1 \)时等式也成立,归纳完毕。

证明Cauchy-Schwarz不等式:

由第1个等式可得,

\[ (\sum_{i = 1}^{n} a_i b_i)^2 = (\sum_{i = 1}^{n} a_i^2) (\sum_{j = 1}^{n} b_j^2) - \dfrac{1}{2} \sum_{i = 1}^{n} \sum_{j = 1}^{n} (a_i b_j - a_j b_i)^2, \]

这里由于\( \dfrac{1}{2} \sum_{i = 1}^{n} \sum_{j = 1}^{n} (a_i b_j - a_j b_i)^2 \geq 0 \),于是可得,

\[ (\sum_{i = 1}^{n} a_i b_i)^2 \leq (\sum_{i = 1}^{n} a_i^2) (\sum_{j = 1}^{n} b_j^2), \]

进而可得,

\[ |\sum_{i = 1}^{n} a_i b_i| = ((\sum_{i = 1}^{n} a_i b_i)^2)^{1/2} \leq (\sum_{i = 1}^{n} a_i^2)^{1/2} (\sum_{j = 1}^{n} b_j^2)^{1/2}。 \]

证明三角不等式:

由Cauchy-Schwarz不等式可得, \( \sum_{i = 1}^{n} a_i b_i \leq |\sum_{i = 1}^{n} a_i b_i| \leq (\sum_{i = 1}^{n} a_i^2)^{1/2} (\sum_{j = 1}^{n} b_j^2)^{1/2} \),进而可得,

\[ \begin{aligned} \sum_{i = 1}^{n} (a_i + b_i)^2 &= \sum_{i = 1}^{n} (a_i^2 + 2 a_i b_i + b_i^2) \\ &= \sum_{i = 1}^{n} a_i^2 + 2 \sum_{i = 1}^{n} a_i b_i + \sum_{i = 1}^{n} b_i^2 \\ &\leq \sum_{i = 1}^{n} a_i^2 + \sum_{i = 1}^{n} b_i^2 + 2((\sum_{i = 1}^{n} a_i^2)^{1/2} (\sum_{j = 1}^{n} b_j^2)^{1/2}) \\ &= ((\sum_{i = 1}^{n} a_i^2)^{1/2} + (\sum_{i = 1}^{n} b_i^2)^{1/2})^2 \end{aligned} \]

最终可得,

\[ \begin{aligned} (\sum_{i = 1}^{n} (a_i + b_i)^2)^{1/2} \leq (\sum_{i = 1}^{n} a_i^2)^{1/2} + (\sum_{j = 1}^{n} b_j^2)^{1/2}。 \end{aligned} \]

证毕。

练习1.1.6

题目:

Show that \( (\mathbf{R}^n , d_{l^2}) \) in Example 1.1.6 is indeed a metric space. (Hint: use Exercise 1.1.5.)

证明:

证明满足条件(a):

易证,略。

证明满足条件(b):

\( \forall x \neq y \in \mathbf{R}^n \),记\( x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \),由\( x \neq y \),可得\( \exists 1 \leq k \leq n \),满足\( x_k \neq y_k \),此时有\( (x_k - y_k)^2 > 0 \),而\( \forall 1 \leq i \leq n, i \neq k \),我们有\( (x_i - y_i)^2 \geq 0 \),可得\( (x_1 - y_1)^2 + \dots + (x_n - y_n)^2 > 0 \),进而可得\( d_{l^2}(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} > 0 \)。

证明满足条件(c):

易证,略。

证明满足条件(d):

\( \forall x, y, z \in \mathbf{R}^n \),记\( x = (x_1, \dots, x_n), y = (y_1, \dots, y_n), z = (z_1, \dots, z_n) \), \( \forall 1 \leq i \leq n \),令\( a_i = x_i - y_i, b_i = y_i - z_i \),由练习1.1.5证明的三角不等式,可得,

\[ \begin{aligned} d_{l^2}(x, z) &= ((x_1 - z_1)^2 + \dots + (x_n - z_n)^2)^{1/2} \\ &= (\sum_{i = 1}^{n} (a_i + b_i)^2)^{1/2} \\ &\leq (\sum_{i = 1}^{n} a_i^2)^{1/2} + (\sum_{j = 1}^{n} b_j^2)^{1/2} \\ &= d_{l^2}(x, y) + d_{l^2}(y, z)。 \end{aligned} \]

证毕。

练习1.1.7

题目:

Show that the pair \( (\mathbf{R}^n, d_{l^1}) \) in Example 1.1.7 is indeed a metric space.

证明:

\( \forall x, y, z \in \mathbf{R}^n \),记\( x = (x_1, \dots, x_n), y = (y_1, \dots, y_n), z = (z_1, \dots, z_n) \)。

证明满足条件(a):

易证,略。

证明满足条件(b):

由\( x \neq y \),可得\( \exists 1 \leq k \leq n \),满足\( x_k \neq y_k \),此时有\( |x_k - y_k| > 0 \),而\( \forall 1 \leq i \leq n, i \neq k \),我们有\( |x_i - y_i| \geq 0 \),可得\( |x_1 - y_1| + \dots + |x_n - y_n| > 0 \),这意味着\( d_{l^1}(x, y) > 0 \)。

证明满足条件(c):

易证,略。

证明满足条件(d):

\( \forall 1 \leq i \leq n \),我们有\( |x_i - z_i| = |(x_i - y_i) + (y_i - z_i)| \leq |x_i - y_i| + |y_i - z_i| \),进而可得\( d_{l^1}(x, z) = \sum_{i = i}^{n} |x_i - z_i| \leq \sum_{i = 1}^{n} (|x_i - y_i| + |y_i - z_i|) = \sum_{i = 1}^{n} |x_i - y_i| + \sum_{i = 1}^{n} |y_i - z_i| = d_{l^1}(x, y) + d_{l^1}(y, z) \)。

证毕。

练习1.1.8

题目:

Prove the two inequalities in (1.1). (Hint: For the first inequality, square both sides. For the second inequality, use Exercise (1.1.5).)

(1.1)中的两个不等式:

\( d_{l^2}(x, y) \leq d_{l^1}(x, y) \leq \sqrt{n} d_{l^2}(x, y) \)

证明:

记\( x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \)。

证明第1个不等式:

首先我们有:

\[ \begin{aligned} (d_{l^1}(x, y))^2 &= (\sum_{i = 1}^{n} |x_i - y_i|)^2 \\ &= \sum_{i = 1}^{n} \sum_{j = 1}^{n} |x_i - y_i||x_j - y_j| \\ &= (\sum_{(i, j) \in \{ 1, \dots ,n \} \times \{ 1, \dots ,n \}, i \neq j} |x_i - y_i||x_j - y_j|) + (\sum_{(i, j) \in \{ 1, \dots ,n \} \times \{ 1, \dots ,n \}, i = j} |x_i - y_i||x_j - y_j|) \\ &= (\sum_{(i, j) \in \{ 1, \dots ,n \} \times \{ 1, \dots ,n \}, i \neq j} |x_i - y_i||x_j - y_j|) + (\sum_{i = 1}^{n} |x_i - y_i||x_i - y_i|) \\ &= (\sum_{(i, j) \in \{ 1, \dots ,n \} \times \{ 1, \dots ,n \}, i \neq j} |x_i - y_i||x_j - y_j|) + (\sum_{i = 1}^{n} (x_i - y_i)^2) \end{aligned} \]

上面\( \sum_{(i, j) \in \{ 1, \dots ,n \} \times \{ 1, \dots ,n \}, i \neq j} |x_i - y_i||x_j - y_j| \geq 0 \),加上\( \sum_{i = 1}^{n} (x_i - y_i)^2 = (d_{l^2}(x, y))^2 \),于是可得\( (d_{l^1}(x, y))^2 \geq (d_{l^2}(x, y))^2 \),进一步可得\( d_{l^1}(x, y) \geq d_{l^2}(x, y) \)。

证明第2个不等式:

使用Cauchy-Schwarz不等式可得,

\[ \begin{aligned} d_{l^1}(x, y) &= \sum_{i = 1}^{n} |x_i - y_i| = |\sum_{i = 1}^{n} (1 \times |x_i - y_i|)| \\ &\leq (\sum_{i = 1}^{n} 1^2)^{1/2} (\sum_{i = 1}^{n} (|x_i - y_i|)^2)^{1/2} \\ &= \sqrt{n} d_{l^2}(x, y) \end{aligned} \]

证毕。

练习1.1.9

题目:

Show that the pair \( (\mathbf{R}^n, d_{l^{\infty}}) \) in Example 1.1.9 is indeed a metric space.

证明:

证明满足条件(a):

易证,略。

证明满足条件(b):

由\( x \neq y \),可得\( \exists 1 \leq k \leq n \),满足\( x_k \neq y_k \),此时有\( |x_k - y_k| > 0 \),而\( \forall 1 \leq i \leq n, i \neq k \),我们有\( |x_i - y_i| \geq 0 \),可得\( \sup \{ |x_i - y_i| : 1 \leq i \leq n \} > 0 \),这意味着\( d_{l^{\infty}}(x, y) > 0 \)。

证明满足条件(c):

易证,略。

证明满足条件(d):

\( \forall 1 \leq i \leq n \),我们有\( |x_i - z_i| = |(x_i - y_i) + (y_i - z_i)| \leq |x_i - y_i| + |y_i - z_i| \),进而可得\( d_{l^1}(x, z) = \sup \{ |x_i - z_i| : 1 \leq i \leq n \} \leq \sup \{ |x_i - y_i| + |y_i - z_i| : 1 \leq i \leq n \} = \sup \{ |x_i - y_i| : 1 \leq i \leq n \} + \sup \{ |y_i - z_i| : 1 \leq i \leq n \} = d_{l^{\infty}}(x, y) + d_{l^{\infty}}(y, z) \)。

注:这里\( \sup \{ |x_i - y_i| + |y_i - z_i| : 1 \leq i \leq n \} = \sup \{ |x_i - y_i| : 1 \leq i \leq n \} + \sup \{ |y_i - z_i| : 1 \leq i \leq n \} \)是比较容易证明的,这里就不证了(反证法:假设\( |x_i - y_i|, |y_j - z_j| \)不都取最大值的话,则\( |x_i - y_i| + |y_i - z_i| \)能达到最大值吗?)。

证毕。

练习1.1.10

题目:

Prove the two inequalities in (1.2).

(1.2)中的两个不等式:

\( \dfrac{1}{\sqrt{n}} d_{l^2}(x, y) \leq d_{l^{\infty}}(x, y) \leq d_{l^2}(x, y) \)

证明:

记\( x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \)。

证明第1个不等式:

\( \forall 1 \leq i \leq n \),我们有\( (x_i - y_i)^2 \leq (\sup \{ |x_i - y_i| : 1 \leq i \leq n \})^2 \),可得\( (d_{l^2}(x, y))^2 \leq n (d_{l^{\infty}}(x, y))^2 \),进而可得\( \dfrac{1}{\sqrt{n}} d_{l^2}(x, y) \leq d_{l^{\infty}}(x, y) \)。

证明第2个不等式:

由\( \exists 1 \leq k \leq n \)满足\( |x_k - y_k| = \sup \{ |x_i - y_i| : 1 \leq i \leq n \} \),可得\( (d_{l^2}(x, y))^2 = (\sum_{i = 1}^{n} (x_i - y_i)^2) \geq (\sup \{ |x_i - y_i| : 1 \leq i \leq n \})^2 = (d_{l^{\infty}}(x, y))^2 \),进而可得\( d_{l^2}(x, y) \geq d_{l^{\infty}}(x, y) \)。

证毕。

练习1.1.11

题目:

Show that the discrete metric \( (X, d_{\text{disc}}) \) in Example 1.1.11 is indeed a metric space.

证明:

证明满足条件(a):

易证,略。

证明满足条件(b):

易证,略。

证明满足条件(c):

易证,略(分\( x = y, x \neq y \)两种情况讨论)。

证明满足条件(d):

\( \forall x, y, z \in \mathbf{R}^n \),分情况讨论:

  1. 如果\( x = z \),则\( d(x, z) = 0 \leq d(x, y) + d(y, z) \)。
  2. 如果\( x \neq z \),则此时\( x = y, y = z \)不能同时成立,于是有\( x \neq y \)或\( y \neq z \),进而\( d(x, y) + d(y, z) \geq 1 = d(x, z) \)。

证毕。

练习1.1.12

题目:

Prove Proposition 1.1.18.

Proposition 1.1.18的内容:

(Equivalence of \( l^1 \), \( l^2 \), \( l^{\infty} \)) Let \( \mathbf{R}^n \) be a Euclidean space, and let \( (x^{(k)})_{k = m}^{\infty} \) be a sequence of points in \( \mathbf{R}^n \). We write \( x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}) \), i.e., for \( j = 1, 2, \dots, n, x_j^{(k)} \in \mathbf{R} \) is the jth co-ordinate of \( x^{(k)} \in \mathbf{R}^n \). Let \( x = (x_1, \dots, x_n) \) be a point in \( \mathbf{R}^n \). Then the following four statements are equivalent:

  1. \( (x^{(k)})_{k = m}^{\infty} \) converges to \( x \) with respect to the Euclidean metric \( d_{l^2} \).
  2. \( (x^{(k)})_{k = m}^{\infty} \) converges to \( x \) with respect to the taxicab metric \( d_{l^1} \).
  3. \( (x^{(k)})_{k = m}^{\infty} \) converges to \( x \) with respect to the sup norm metric \( d_{l^{\infty}} \).
  4. For every \( 1 \leq j \leq n \), the sequence \( (x_j^{(k)})_{k = m}^{\infty} \) converges to \( x_j \) (Notice that this is a sequence of real numbers, not of points in \( \mathbf{R}^n \).)

证明:

证明\( 1 \rightarrow 2 \):

由\( (x^{(k)})_{k = m}^{\infty} \)在Euclidean度量下收敛到\( x \),可得\( \forall \epsilon > 0, \exists N \geq m, \forall n' \geq N, d_{l^2}(x^{(n')}, x) \leq \epsilon \),进而由不等式(1.1),可得\( d_{l^1}(x^{(n')}, x) \leq \sqrt{n} d_{l^2}(x^{(n')}, x) \leq \sqrt{n} \epsilon \)( 注: 这里\( n \)是维度,是常数),这意味着\( (x^{(k)})_{k = m}^{\infty} \)在taxicab度量下收敛到\( x \)。

证明\( 2 \rightarrow 3 \):

由\( (x^{(k)})_{k = m}^{\infty} \)在taxicab度量下收敛到\( x \),可得\( \forall \epsilon > 0, \exists N \geq m, \forall n' \geq N, d_{l^2}(x^{(n')}, x) \leq \epsilon \),进而由不等式(1.2),可得\( d_{l^{\infty}}(x^{(n')}, x) \leq d_{l^2}(x^{(n')}, x) \leq \epsilon \),这意味着\( (x^{(k)})_{k = m}^{\infty} \)在sup norm度量下收敛到\( x \)。

证明\( 3 \rightarrow 4 \):

由\( (x^{(k)})_{k = m}^{\infty} \)在sup norm度量下收敛到\( x \),可得\( \forall \epsilon > 0, \exists N \geq m, \forall n' \geq N, d_{l^{\infty}}(x^{(n')}, x) \leq \epsilon \),进而由\( \exists 1 \leq j' \leq n \)满足\( |x_{j'}^{(n')} - y_{j'}^{(n')}| = \sup \{ |x_i^{(n')} - y_i^{(n')}| : 1 \leq i \leq n \} \),可得\( \forall 1 \leq j \leq n, d_{l^{\infty}}(x_j^{(n')}, x_j) \leq d_{l^{\infty}}(x_{j'}^{(n')}, x_{j'}) = d_{l^{\infty}}(x^{(n')}, x) \leq \epsilon \),这意味着\( (x_j^{(k)})_{k = m}^{\infty} \)收敛到\( x_j \)。

证明\( 4 \rightarrow 1 \):

\( \forall 1 \leq j \leq n \),由\( (x_j^{(k)})_{k = m}^{\infty} \)收敛到\( x_j \),可得\( \forall \epsilon > 0, \exists N \geq m, \forall n' \geq N, |x_j^{(n')} - x_j| \leq \epsilon \),于是可得\( (d_{l^2}(x^{(n')}, x))^2 = \sum_{j = 1}^{n} (x_j^{(n')} - x_j)^2 \leq n \epsilon^2 \),进而可得\( d_{l^2}(x^{(n')}, x) \leq \sqrt{n} \epsilon \),这意味着\( (x^{(k)})_{k = m}^{\infty} \)在Euclidean度量下收敛到\( x \)。

证毕。

练习1.1.13

题目:

Prove Proposition 1.1.19.

Proposition 1.1.19的内容:

(Convergence in the discrete metric) Let \( X \) be any set, and let \( d_{\text{disc}} \) be the discrete metric on \( X \). Let \( (x^{(n)})_{n = m}^{\infty} \) be a sequence of points in \( X \), and let \( x \) be a point in \( X \). Then \( (x^{(n)})_{n = m}^{\infty} \) converges to \( x \) with respect to the discrete metric \( d_{\text{disc}} \) if and only if there exists an \( N \geq m \) such that \( x^{(n)} = x \) for all \( n \geq N \).

证明:

由\( (x^{(n)})_{n = m}^{\infty} \)收敛于\( x \)可得, \( \exists N \geq m, \forall n \geq N, d_{\text{disc}}(x^{(n)}, x) \leq \dfrac{1}{2} \),而所有不同点之间的度量都是\( 1 > \dfrac{1}{2} \),唯一\( \leq \dfrac{1}{2} \)的度量就是\( 0 \),而度量要为\( 0 \),则要求两个点是同一个点,这意味着\( \forall n \geq N, x = x^{(n)} \)。

证毕。

练习1.1.14

题目:

Prove Proposition 1.1.20. (Hint: modify the proof of Proposition 6.1.7 from Analysis I.)

Proposition 1.1.20的内容:

(Uniqueness of limits) Let \( (X, d) \) be a metric space, and let \( (x^{(n)})_{n = m}^{\infty} \) be a sequence in \( X \). Suppose that there are two points \( x, x' \in X \) such that \( (x^{(n)})_{n = m}^{\infty} \) converges to x with respect to \( d \), and \( (x^{(n)})_{n = m}^{\infty} \) also converges to \( x' \) with respect to \( d \). Then we have \( x = x' \).

证明:

假设\( x \neq x' \),则\( \epsilon_0 = \dfrac{|x - x'|}{3} > 0 \),此时由\( (x^{(n)})_{n = m}^{\infty} \)收敛于\( x \),可得\( \exists N_1 \geq m, \forall n \geq N_1, d(x^{(n)}, x) \leq \epsilon_0 \),再由\( (x^{(n)})_{n = m}^{\infty} \)收敛于\( x' \),可得\( \exists N_2 \geq m, \forall n \geq N_2, d(x^{(n)}, x') \leq \epsilon_0 \),令\( N = \max(N_1, N_2) \),则\( \forall n \geq N \),有\( \epsilon = d(x, x') \leq d(x, x^{(n)}) + d(x^{(n)}, x') \leq \dfrac{2|x - x'|}{3} \),这里\( \epsilon \leq \dfrac{2|x - x'|}{3} \),矛盾,因此假设不成立,有\( x = x' \)。

证毕。

练习1.1.15

题目:

Let

\[ X := \{ (a_n)_{n = 0}^{\infty} : \sum_{n = 0}^{\infty} |a_n| < \infty \} \]

be the space of absolutely convergent sequences. Define the \( l^1 \) and \( l^{\infty} \) metrics on this space by

\[ d_{l^1}((a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) := \sum_{n = 0}^{\infty} |a_n - b_n|; \]

\[ d_{l^{\infty}}((a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) := \sup_{n \in \mathbf{N}} |a_n - b_n|. \]

Show that these are both metrics on \( X \), but show that there exist sequences \( x^{(1)}, x^{(2)}, \dots \) of elements of \( X \) (i.e., sequences of sequences) which are convergent with respect to the \( d_{l^{\infty}} \) metric but not with respect to the \( d_{l^1} \) metric. Conversely, show that any sequence which converges in the \( d_{l^1} \) metric automatically converges in the \( d_{l^{\infty}} \) metric.

解答:

证明\( d_{l^1} \)为\( X \)的度量:

首先得确保\( \forall (a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty} \in X, d_{l^1}((a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) \)都是有定义的,由\( (a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty} \)绝对收敛(即序列对应的绝对值级数收敛),可得\( \sum_{n = 0}^{\infty} (|a_n| + |b_n|) \)也收敛,而\( \forall n \geq 0, |a_n - b_n| \leq |a_n| + |b_n| \),加上\( \sum_{n = 0}^{\infty} (|a_n| + |b_n|) \)收敛,根据推论I.7.3.2,可得\( \sum_{n = 0}^{\infty} |a_n - b_n| \)收敛,这意味着\( d_{l^1}((a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) \)是有定义的。

证明满足条件(a):

\( \forall (a_n)_{n = 0}^{\infty} \in X \),我们有 \( d_{l^1}((a_n)_{n = 0}^{\infty}, (a_n)_{n = 0}^{\infty}) = \sum_{n = 0}^{\infty} |a_n - a_n| = \sum_{n = 0}^{\infty} 0 = 0 \)。

证明满足条件(b):

\( \forall (a_n)_{n = 0}^{\infty} \neq (b_n)_{n = 0}^{\infty} \in X \),可得\( \exists k \geq 0, a_k \neq b_k \),于是有\( |a_k - b_k| > 0 \),进而可得\( d_{l^1}((a_n)_{n = 0}^{\infty}, (a_n)_{n = 0}^{\infty}) = \sum_{n = 0}^{\infty} |a_n - b_n| \geq |a_k - b_k| > 0 \)。

证明满足条件(c):

易证,略。

证明满足条件(d):

\( \forall (a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}, (c_n)_{n = 0}^{\infty} \in X \),我们有\( \forall n \geq 0, |a_n - c_n| \leq |a_n - b_n| + |b_n - c_n| \),进而根据推论I.7.3.2,可得\( d_{l^1}((a_n)_{n = 0}^{\infty}, (c_n)_{n = 0}^{\infty}) = \sum_{n = 0}^{\infty} |a_n - c_n| \leq \sum_{n = 0}^{\infty} (|a_n - b_n| + |b_n - c_n|) = \sum_{n = 0}^{\infty} |a_n - b_n| + \sum_{n = 0}^{\infty} |b_n - c_n| = d_{l^1}((a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) + d_{l^1}((b_n)_{n = 0}^{\infty}, (c_n)_{n = 0}^{\infty}) \)。

综上,\( d_{l^1} \)为\( X \)的度量,证毕。

证明\( d_{l^{\infty}} \)为\( X \)的度量:

首先得确保\( \forall (a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty} \in X, d_{l^1}((a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) \)都是实数,而不会是\( \infty \),假设\( \sup_{n \in \mathbf{N}} |a_n - b_n| = \infty \),则\( (|a_n - b_n|)_{n = 0}^{\infty} \)无上界,进而\( \sum_{n = 0}^{\infty} |a_n - b_n| \)不收敛,这和上面的结论矛盾,因此假设不成立,有\( d_{l^{\infty}}((a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) = \sup_{n \in \mathbf{N}} |a_n - b_n| \)为实数。

证明满足条件(a):

易证,略。

证明满足条件(b):

\( \forall (a_n)_{n = 0}^{\infty} \neq (b_n)_{n = 0}^{\infty} \in X \),可得\( \exists k \geq 0, a_k \neq b_k \),于是有\( |a_k - b_k| > 0 \),进而可得\( d_{l^{\infty}}((a_n)_{n = 0}^{\infty}, (a_n)_{n = 0}^{\infty}) = \sup_{n \in \mathbf{N}} |a_n - b_n| \geq |a_k - b_k| > 0 \)。

证明满足条件(c):

易证,略。

证明满足条件(d):

\( \forall (a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}, (c_n)_{n = 0}^{\infty} \in X \),我们有\( \forall n \geq 0, |a_n - c_n| \leq |a_n - b_n| + |b_n - c_n| \),进而可得\( d_{l^{\infty}}((a_n)_{n = 0}^{\infty}, (c_n)_{n = 0}^{\infty}) = \sup_{n \in \mathbf{N}}^{\infty} |a_n - c_n| \leq \sup_{n \in \mathbf{N}} (|a_n - b_n| + |b_n - c_n|) = \sup_{n \in \mathbf{N}} |a_n - b_n| + \sup_{n \in \mathbf{N}} |b_n - c_n| = d_{l^{\infty}}((a_n)_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) + d_{l^{\infty}}((b_n)_{n = 0}^{\infty}, (c_n)_{n = 0}^{\infty}) \)。

综上,\( d_{l^{\infty}} \)为\( X \)的度量,证毕。

给出一个序列满足在度量\( d_{l^{\infty}} \)下收敛,但在\( d_{l^1} \)下不收敛:

已知级数\( \sum_{n = 1}^{\infty} \dfrac{1}{n^2} \)绝对收敛,我们可以在它基础上改,但是题目要求下标从\( 0 \)开始,而当\( n = 0 \)时,\( \dfrac{1}{n^2} \)是未定义的,故我们当\( n = 0 \)时直接给一个特殊值\( 0 \),构造序列\( (b_n)_{n = 0}^{\infty} \),当\( n = 0 \)时,令\( b_n = 0 \),当\( n > 0 \)时,令\( b_n = \dfrac{1}{n^2} \),易得\( \sum_{n = 0}^{\infty} b_n \)也绝对收敛,进而\( (b_n)_{n = 0}^{\infty} \in X \)。

接着,我们构造一堆\( X \)中的“点”(每个“点”都是一个序列,而不仅仅是一个数),我们希望构造的这些“点”收敛于序列\( (b_n)_{n = 0}^{\infty} \in X \),容易想到,序列的前几项不影响对应级数的收敛,故我们可以在序列\( (b_n)_{n = 0}^{\infty} \)的基础上改前几项,同时,我们希望修改到的这前几项对级数和的影响越来越小,进而级数和最终会和\( \sum_{n = 0}^{\infty} b_n \)越来越接近,而不是越来越远,容易想到,在\( \dfrac{1}{n^2} \)的基础上,加上类似\( \dfrac{1}{k}, \dfrac{1}{k^2}, \dfrac{1}{k^3} \)这种会变得越来越小的项,或许可以达到我们的目的,选择前几项加上\( \dfrac{1}{k} \)试试。

具体的,\( \forall k \geq 1 \),我们构造序列\( (x_n^{(k)})_{n = 0}^{\infty} \),当\( n = 0 \)时,令\( x_n^{(k)} = \dfrac{1}{k} \),当\( 1 \leq n \leq k \)时,令\( x_n^{(k)} = \dfrac{1}{n^2} + \dfrac{1}{k} \),当\( n > k \)时,令\( x_n^{(k)} = b_n \)。

\( \forall k \geq 1 \),令\( x^{(k)} = (x_n^{(k)})_{n = 0}^{\infty} \),令\( b = (b_n)_{n = 0}^{\infty} \),我们现在证明序列\( (x^{(k)})_{k = 1}^{\infty} \)(序列的序列)在度量\( d_{l^{\infty}} \)下收敛于\( b \):

\( \forall k \geq 1, \forall 0 \leq n \leq k \),我们有\( |x_n^{(k)} - b_n| = \dfrac{1}{k} \),而\( \forall n > k \)时,我们则有\( |x_n^{(k)} - b_n| = 0 \),可得\( d_{l^{\infty}}((x_n^{(k)})_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) = \sup_{n \in \mathbf{N}} |x_n^{(k)} - b_n| = \dfrac{1}{k} \),而\( \forall \epsilon > 0 \),存在\( K \geq 1 \),满足\( \dfrac{1}{K} < \epsilon \),于是可得\( \forall k \geq K \),有\( d_{l^{\infty}}((x_n^{(k)})_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) = \sup_{n \in \mathbf{N}} |x_n^{(k)} - b_n| = \dfrac{1}{k} \leq \dfrac{1}{K} < \epsilon \),这说明\( (x^{(k)})_{k = 1}^{\infty} \)在度量\( d_{l^{\infty}} \)下收敛于\( b \)。

我们接着证明\( (x^{(k)})_{k = 1}^{\infty} \)在度量\( d_{l^1} \)下则不收敛,这说明\( d_{l^1} \)和\( d_{l^{\infty}} \)在无限维的情况下是不等价的(这里每个\( x^{(k)} \)都是一个序列,相当于有无限个坐标分量,所以说是无限维):

\( \forall k \geq 1, \forall 0 \leq n \leq k \),我们有\( |x_n^{(k)} - b_n| = \dfrac{1}{k} \),而\( \forall n > k \)时,我们则有\( |x_n^{(k)} - b_n| = 0 \),可得\( d_{l^1}((x_n^{(k)})_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) = \sum_{n = 0}^{\infty} |x_n^{(k)} - b_n| = \dfrac{k + 1}{k} > 1 \),距离没办法任意缩小,明显有\( (x^{(k)})_{k = 1}^{\infty} \)在度量\( d_{l^1} \)下不收敛。

证明任意序列如果在度量\( d_{l^1} \)下收敛的话,则在度量\( d_{l^{\infty}} \)下也收敛:

\( \forall X \)下的序列\( (x^{(k)})_{k = 1}^{\infty} \),如果该序列在度量\( d_{l^1} \)下收敛于某个\( b = (b_n)_{n = 0}^{\infty} \in X \)的话,则\( \forall k \geq 1 \),我们记\( x^{(k)} = (x_n^{(k)})_{n = 0}^{\infty} \),此时由收敛可得,\( \forall \epsilon > 0, \exists K \geq 1 \)满足 \( \forall k \geq K, d_{l^1}((x_n^{(k)})_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) = \sum_{n = 0}^{\infty} |x_n^{(k)} - b_n| \leq \epsilon \),而\( \sup_{n \in \mathbf{N}} |x_n^{(k)} - b_n| \leq \sum_{n = 0}^{\infty} |x_n^{(k)} - b_n| \),可得\( d_{l^{\infty}}((x_n^{(k)})_{n = 0}^{\infty}, (b_n)_{n = 0}^{\infty}) = \sup_{n \in \mathbf{N}} |x_n^{(k)} - b_n| \leq \sum_{n = 0}^{\infty} |x_n^{(k)} - b_n| \leq \epsilon \),综上,有\( (x^{(k)})_{k = 1}^{\infty} \)在度量\( d_{l^{\infty}} \)下也收敛,且收敛于同一个“点”\( b \),证毕。

练习1.1.16

题目:

Let \( (x_n)_{n = 1}^{\infty} \) and \( (y_n)_{n = 1}^{\infty} \) be two sequences in a metric space \( (X, d) \). Suppose that \( (x_n)_{n = 1}^{\infty} \) converges to a point \( x \in X \), and \( (y_n)_{n = 1}^{\infty} \) converges to a point \( y \in X \). Show that \( \lim_{n \to \infty} d(x_n, y_n) = d(x, y) \). (Hint: use the triangle inequality several times.)

证明:

由\( (x_n)_{n = 1}^{\infty} \)收敛于\( x \)可得, \( \forall \epsilon > 0, \exists N_1 \geq 1, \forall n \geq N_1, d(x_n, x) \leq \dfrac{\epsilon}{2} \),而由\( (y_n)_{n = 1}^{\infty} \)收敛于\( y \)可得, \( \forall \epsilon > 0, \exists N_2 \geq 1, \forall n \geq N_2, d(y_n, y) \leq \dfrac{\epsilon}{2} \),取\( N = max(N_1, N_2) \),则\( \forall n \geq N \),有\( d(x_n, y_n) - d(x, y) \leq (d(x_n, x) + d(x, y_n)) - d(x, y) \leq d(x_n, x) + (d(x, y) + d(y, y_n)) - d(x, y) = d(x_n, x) + d(y, y_n) = \epsilon \),还有\( d(x, y) - d(x_n, y_n) \leq (d(x, x_n) + d(x_n, y)) - d(x_n, y_n) \leq d(x, x_n) + (d(y, y_n) + d(y_n, x_n)) - d(x_n, y_n) = d(x, x_n) + d(y, y_n) = \epsilon \),综上,有\( d(x_n, y_n) - d(x, y) \leq \epsilon, d(x, y) - d(x_n, y_n) \leq \epsilon \),而由\( d(x, y) - d(x_n, y_n) \leq \epsilon \),可得\( d(x_n, y_n) - d(x, y) \geq -\epsilon \),再加上\( d(x_n, y_n) - d(x, y) \leq \epsilon \),有\( |d(x_n, y_n) - d(x, y)| \leq \epsilon \),至此,我们有了结论:\( \lim_{n \to \infty} d(x_n, y_n) = d(x, y) \)。

证毕。

章节1.2

练习1.2.1

题目:

Verify the claims in Example 1.2.8.

Example 1.2.8的内容:

When we give a set \( X \) the discrete metric \( d_{\text{disc}} \), and \( E \) is any subset of \( X \), then every element of \( E \) is an interior point of \( E \), every point not contained in \( E \) is an exterior point of \( E \), and there are no boundary points; see Exercise 1.2.1.

证明:

证明\( \forall x \in E \),\( x \)均为\( E \)的内点:

\( \forall x \in E \),令\( r = \dfrac{1}{2} \),则\( B(x, r) = \{ y \in X : d(y, x) < r \} = \{ x \} \),可得\( B(x, r) \cap E = \{ x \} \subseteq E \),这意味着\( x \)为\( E \)的内点。

证明\( \forall x \in X \setminus E \),\( x \)均为\( E \)的外点:

\( \forall x \in X \setminus E \),令\( r = \dfrac{1}{2} \),则\( B(x, r) = \{ y \in X : d(y, x) < r \} = \{ x \} \),可得\( B(x, r) \cap E = \empty \)(因为\( x \notin E \)),这意味着\( x \)为\( E \)的外点。

证明\( X \)中没有边界点:

\( \forall x \in X \),如果\( x \in E \),则\( x \)为内点,不是边界点,如果\( x \notin E \),则\( x \in X \setminus E \),此时\( x \)为外点,不是边界点。综上,\( X \)中没有边界点。

证毕。

练习1.2.2

题目:

Prove Proposition 1.2.10. (Hint: for some of the implications one will need the axiom of choice, as in Lemma 8.4.5 from Analysis I.)

Proposition 1.2.10的内容:

Let \( (X, d) \) be a metric space, let \( E \) be a subset of \( X \), and let \( x_0 \) be a point in \( X \). Then the following statements are logically equivalent.

  1. \( x_0 \) is an adherent point of \( E \).
  2. \( x_0 \) is either an interior point or a boundary point of \( E \).
  3. There exists a sequence \( (x_n)_{n = 1}^{\infty} \) in \( E \) which converges to \( x_0 \) with respect to the metric \( d \).

证明:

证明\( 1 \rightarrow 2 \):

为了证明\( x_0 \)是\( E \)的内点或者边界点,我们仅仅需要证明 \( x_0 \)不是\( E \)的外点即可。

假设\( x_0 \)是\( E \)的外点,则\( \exists r > 0 \)满足 \( B(x_0, r) \cap E = \empty \),然而这和\( x_0 \)为\( E \)的附着点矛盾,因此假设不成立,有\( x_0 \)不是\( E \)的内点。

证明\( 2 \rightarrow 3 \):

由\( x_0 \)是\( E \)的内点或者边界点,可得\( x_0 \)不是\( E \)的外点,进而可得\( \forall r > 0 \),均有\( B(x_0, r) \cap E \neq \empty \),于是\( \forall n \geq 1 \),可得\( B(x_0, \dfrac{1}{n}) = \{ x \in X : d(x, x_0) < \dfrac{1}{n} \} \cap E \neq \empty \),任取\( B(x_0, \dfrac{1}{n}) \)中的任意一个元素作为序列\( (x_n)_{n = 1}^{\infty} \)的第\( n \)个元素\( x_n \)(注:这里我们隐式地用到了选择公理),有\( x_n \in E \)。

我们现在证明\( (x_n)_{n = 1}^{\infty} \)收敛于\( x_0 \), \( \forall \epsilon > 0, \exists N \geq 1 \)满足\( \dfrac{1}{N} < \epsilon \),进而\( \forall n \geq N \),有\( d(x_n, x_0) < \dfrac{1}{n} \leq \dfrac{1}{N} < \epsilon \),这意味着\( (x_n)_{n = 1}^{\infty} \)收敛于\( x_0 \)。

证明\( 3 \rightarrow 1 \):

由\( (x_n)_{n = 1}^{\infty} \)收敛于\( x_0 \),可得\( \forall r > 0 \),\( \exists N \geq 1 \)满足\( \forall n \geq N, d(x_n, x_0) \leq \dfrac{r}{2} < r \),可得\( x_N \in B(x_0, r) \),又\( x_N \in E \),这意味着\( B(x_0, r) \cap E \neq \empty \),综上,有\( x_0 \)是\( E \)的附着点。

证毕。

练习1.2.3

题目:

Prove Proposition 1.2.15. (Hint: you can use earlier parts of the proposition to prove later ones.)

Proposition 1.2.15的内容:

(Basic properties of open and closed sets) Let \( (X, d) \) be a metric space.

  1. Let \( E \) be a subset of \( X \). Then \( E \) is open if and only if \( E = \text{int}(E) \). In other words, \( E \) is open if and only if for every \( x \in E \), there exists an \( r > 0 \) such that \( B(x, r) \subseteq E \).
  2. Let \( E \) be a subset of \( X \). Then \( E \) is closed if and only if \( E \) contains all its adherent points. In other words, \( E \) is closed if and only if for every convergent sequence \( (x_n)_{n = m}^{\infty} \) in \( E \), the \( \lim_{n \to \infty} x_n \) of that sequence also lies in \( E \).
  3. For any \( x_0 \in X \) and \( r > 0 \), the ball \( B(x_0, r) \) is an open set. The set \( \{ x \in X : d(x, x_0) \leq r \} \) is a closed set. (This set is sometimes called the closed ball of radius \( r \) centered at \( x_0 \).)
  4. Any singleton set \( \{ x_0 \} \), where \( x_0 \in X \), is automatically closed.
  5. If \( E \) is a subset of \( X \), then \( E \) is open if and only if the complement \( X \setminus E := \{ x \in X : x \notin E \} \) is closed.
  6. If \( E_1, \dots, E_n \) is a finite collection of open sets in \( X \), then \( E_1 \cap E_2 \cap \dots \cap E_n \) is also open. If \( F_1, \dots, F_n \) is a finite collection of closed sets in \( X \), then \( F_1 \cup F_2 \cup \dots \cup F_n \) is also closed.
  7. If \( \{ E_{\alpha} \}_{\alpha \in I} \) is a collection of open sets in \( X \) (where the index set \( I \) could be finite, countable, or uncountable), then the union \( \bigcup_{\alpha \in I} E_{\alpha} := \{ x \in X : x \in E_{\alpha} \text{ for some } \alpha \in I \} \) is also open. If \( \{ F_{\alpha} \}_{\alpha \in I} \) is a collection of closed sets in \( X \), then the intersection \( \bigcap_{\alpha \in I} F_{\alpha} := \{ x \in X : x \in F_{\alpha} \text{ for all } \alpha \in I \} \) is also closed.
  8. If \( E \) is any subset of \( X\), then \( \text{int}(E) \) is the largest open set which is contained in \( E \); in other words, \( \text{int}(E) \) is open, and given any other open set \( V \subseteq E \), we have \( V \subseteq \text{int}(E) \). Similarly \( \overline{E} \) is the smallest closed set which contains \( E \); in other words, \( \overline{E} \) is closed, and given any other closed set \( K \supseteq E \), \( K \supseteq \overline{E} \).

证明:

证明1:

必要性:

由\( E \)是开集,可得\( \forall x \in E \),有\( x \)不是\( E \)的边界点, \( x \)也不可能是\( E \)的外点,因为\( E \)的外点要求\( x \notin E \),剩下的唯一可能性就是\( x \)是\( E \)的内点了,于是有\( x \in \text{int}(E) \)了,至此可得\( E \subseteq \text{int}(E) \);而\( \text{int}(E) \subseteq E \)是显然的(因为所有\( E \)的内点都得是\( E \)的成员);综上,有\( E = \text{int}(E) \)。

充分性:

假设\( E \)不是开集,则\( E \)包含至少一个边界点\( x_0 \in \partial E \),但这意味着\( x_0 \notin \text{int}(E) \),可得\( E \)不是\( \text{int}(E) \)的子集,然而这和\( E = \text{int}(E) \)矛盾,因此假设不成立,有\( E \)是开集。

证明2:

我们先证明2的前半段命题。

必要性(前半段命题):

针对\( E \)的所有附着点\( x \),由定理1.2.10可得,\( x \)为内点或者边界点,如果\( x \)为内点,则直接有\( x \in E \),如果\( x \)为边界点,则由\( E \)是闭集,可得\( x \in E \),综上,有\( E \)包含自身所有的附着点。

充分性(前半段命题):

由定理1.2.10可得,\( E \)的所有边界点均是\( E \)的附着点,而\( E \)包含它所有的边界点,这意味着它也包含它所有的附着点,也就是说\( E \)是闭集。

我们最后证明2的后半段命题。

必要性(后半段命题):

针对所有\( E \)上的收敛序列\( (x_n)_{n = m}^{\infty} \),记它收敛于\( x \),我们得证明\( x \in E \),易得\( x \)是\( E \)的附着点,进而由定理1.2.10可得, \( x \)是内点或者边界点,如果\( x \)是内点,则直接有\( x \in E \),如果\( x \)是边界点,则由\( E \)为闭集,也可得\( x \in E \)。

充分性(后半段的命题):

假设\( E \)不封闭,则存在\( E \)不包含的边界点\( x_0 \),进而由定理1.2.10,可得\( x_0 \)为\( E \)的附着点且存在\( E \)上的序列\( (x_n)_{n = m}^{\infty} \)收敛于\( x_0 \),但这意味着\( x_0 \in E \),矛盾,因此假设不成立,有\( E \)为封闭集。

证明3:

先证明\( B(x_0, r) \)为开集:

直接证明它里面的所有元素都是内点就行了, \( \forall x \in B(x_0, r) \),我们有\( x \in X, d(x, x_0) < r \),令\( r' = r - d(x, x_0) \),则\( \forall y \in B(x, r') \),有\( y \in X, d(y, x_0) \leq d(y, x) + d(x, x_0) \leq r' + d(x, x_0) = r - d(x, x_0) + d(x, x_0) = r \),可得\( B(x, r') \subseteq B(x_0, r) \),这意味着\( x \)是\( B(x_0, r) \)的内点。

最后证明\( \{ x \in X : d(x, x_0) \leq r \} \)为闭集:

令\( E = \{ x \in X : d(x, x_0) \leq r \} \),假设\( E \)不是闭集,则存在\( E \)的边界点\( z \)不属于\( E \),可得\( z \in X, d(z, x_0) > r \),令\( r' = d(z, x_0) - r \),则\( \forall y \in B(z, r') \), \( y \in X, d(y, z) < r' \),此时假设\( y \in E \),则\( d(y, x_0) \leq r \),而\( d(z, x_0) \leq d(z, y) + d(y, x_0) < r' + r = d(z, x_0) \),有\( d(z, x_0) < d(z, x_0) \)矛盾,因此假设不成立,有\( y \notin E \),综上,有\( B(z, r') \cap E = \empty \),也就是说\( z \)是\( E \)的外点,不是\( E \)的边界点,这和一开始说的\( z \)为\( E \)的边界点矛盾,因此一开始的假设不成立,有不存在\( E \)的边界点\( z \)不属于\( E \),换句话来说就是\( E \)包含它所有的边界点,可得\( E \)是闭集。

证明4:

针对所有\( \{ x_0 \} \)上的序列\( (b_n)_{n = m}^{\infty} \),有\( \forall n \geq m, b_n = x_0 \),可得\( (b_n)_{n = m}^{\infty} \)收敛于\( x_0 \in E \),再由2可得,\( \{ x_0 \} \)是闭集。

证明5:

从内点的定义,易得\( x \)是\( E \)的内点当且仅当\( x \)是\( X \setminus E \)的外点,也就是\( \text{int}(E) = \text{ext}(X \setminus E) \),同理,也易得\( x \)是\( E \)的外点当且仅当\( x \)是\( X \setminus E \)的内点,也就是\( \text{ext}(E) = \text{int}(X \setminus E) \) (注:这意味着\( \text{int} \)和\( \text{ext} \)在差集操作下是对偶的),于是可得\( \partial (X \setminus E) = X \setminus \text{int}(X \setminus E) \setminus \text{ext}(X \setminus E) = X \setminus \text{ext}(E) \setminus \text{int}(E) = \partial E \)。

必要性:

由\( E \)是开集以及1,可得\( E = \text{int}(E) \),进而可得\( X \setminus E = X \setminus \text{int}(E) = \partial E \cup \text{ext}(E) = \partial (X \setminus E) \cup \text{int}(X \setminus E) \),特别的,有\( X \setminus E \)包含它所有的边界点,于是有\( X \setminus E \)为开集。

充分性:

由\( X \setminus E \)是闭集,可得\( \partial (X \setminus E) \subseteq X \setminus E \),又\( \partial (X \setminus E) = \partial E \),于是有\( \partial E \subseteq X \setminus E \),可得\( \forall x \in \partial E, x \notin E \),也就是说\( E \)不包含它的任意边界点,这意味着\( E \)是开集。

证明6:

先证明\( E_1 \cap E_2 \cap \dots \cap E_n \)为开集:

\( \forall x \in E_1 \cap E_2 \cap \dots \cap E_n, \forall 1 \leq i \leq n \),由\( E_i \)为开集,可得\( \exists r_i > 0 \)满足\( B(x, r_i) \subseteq E_i \),取\( r = \min \{ r_i : 1 \leq i \leq n \} \),则有\( \forall 1 \leq i \leq n, B(x, r) \subseteq E_i \),可得\( B(x, r) \subseteq E_1 \cap E_2 \cap \dots \cap E_n \),此时再由1,可得\( E_1 \cap E_2 \cap \dots \cap E_n \)为开集。

证明完有限个开集的交集仍然是开集,容易联想到,是否无限个开集的交集也仍然是开集呢?答案是否定的,举个反例即可,\( \bigcap_{n = 1}^{\infty} (-\dfrac{1}{n}, \dfrac{1}{n}) = \{ 0 \} \),在常规的实数集度量下,有\( \forall n \geq 1, (-\dfrac{1}{n}, \dfrac{1}{n}) \)均是开集,但是\( \{ 0 \} \)并不是开集,它包含了自身的边界点\( 0 \)。

接着证明\( F_1 \cup F_2 \cup \dots \cup F_n \)为闭集:

\( \forall 1 \leq i \leq n \),由\( F_i \)为闭集以及5,可得\( X \setminus F_i \)为开集,进而可得\( \bigcap_{i = 1}^{n} X \setminus F_i \)为开集,而\( F_1 \cup F_2 \cup \dots \cup F_n = X \setminus (\bigcap_{i = 1}^{n} X \setminus F_i) \),再由5可得,\( F_1 \cup F_2 \cup \dots \cup F_n \)为闭集。

同上,证明完有限个闭集的并集仍然闭集,容易联想到,是否无限个闭集的并集也仍然是闭集呢?答案同样是否定的,举个反例即可,令\( (0, 1) = \bigcup_{x \in (0, 1)} \{ x \} \),这里由\( 4 \)可得,\( \forall x \in (0, 1), \{ x \} \)均为闭集,但是这些闭集的并集是\( (0, 1) \),在常规的实数集度量下,\( (0, 1) \)并不是闭集,它不包含自身的所有边界点\( \{ 0, 1 \} \)。

证明7:

先证明多个开集的并集仍然是开集:

我们通过1来证明,\( \forall x \in \bigcup_{\alpha \in I} E_{\alpha} \),有\( \exists \alpha \in I, x \in E_{\alpha} \),这里\( E_{\alpha} \)是开集,由1可得,\( \exists r > 0, B(x, r) \subseteq E_{\alpha} \subseteq \bigcup_{\alpha \in I} E_{\alpha} \),进而言之,\( \forall x \in \bigcup_{\alpha \in I} E_{\alpha}, \exists r > 0, B(x, r) \subseteq \bigcup_{\alpha \in I} E_{\alpha} \),再由1,可得\( \bigcup_{\alpha \in I} E_{\alpha} \)为开集。

接着证明多个闭集的交集仍然是闭集:

我们通过2来证明,针对所有\( \bigcap_{\alpha \in I} F_{\alpha} \)上的收敛序列\( (x_n)_{n = m}^{\infty} \),我们有\( \forall \alpha \in I \),该序列为\( F_{\alpha} \)上的序列,进而由2,可得\( \lim_{n \to \infty} x_n \in F_{\alpha} \),至此有\( \lim_{n \to \infty} x_n \in \bigcap_{\alpha \in I} F_{\alpha} \),再由2,可得\( \bigcap_{\alpha \in I} F_{\alpha} \)为闭集。

证明8:

证明\( \text{int}(E) \)是开集:

我们通过1来证明, \( \forall x \in \text{int}(E) \),可得\( \exists r > 0, B(x, r) \subseteq E \), \( \forall y \in B(x, \dfrac{r}{2}) \),易得\( B(y, \dfrac{r}{4}) \subseteq B(x, r) \),进而可得\( B(y, \dfrac{y}{4}) \subseteq E \),有\( y \)为\( E \)的内点,综上有\( B(x, \dfrac{r}{2}) \)中所有点均是\( E \)的内点,即\( B(x, \dfrac{r}{2}) \subseteq \text{int}(E) \),此时由1可得,\( \text{int}(E) \)是开集。

证明\( \text{int}(E) \)是所有被包含在\( E \)中的开集中最大的,即\( \text{int}(E) \)是\( E \)下最大的开集:

\( \forall \)开集\( V \subseteq E \),我们得证明\( V \subseteq \text{int}(E) \),即得证明\( V \)中所有元素均是\( E \)的内点, \( \forall x \in V \),由\( V \)是开集,可得\( \exists r > 0, B(x, r) \subseteq V \),而\( V \subseteq E \),可得\( B(x, r) \subseteq E \),至此有\( x \)为\( E \)的内点,于是有\( x \in \text{int}(E) \)。

证明\( \overline{E} \)是闭集:

我们有\( \text{ext}(E) = \text{int}(X \setminus E) \),这里\( \text{int}(X \setminus E) \)通过刚才的证明可得是开集,于是\( \text{ext}(E) \)也是开集,而\( \overline{E} = X \setminus \text{ext}(E) \) (即\( \overline{E} = \text{int}(E) \cup \partial E \),这点由定理1.2.10(b)可得),此时通过5可得,\( \overline{E} = X \setminus \text{ext}(E) \)是闭集。

证明\( \overline{E} \)是所有包含\( E \)的闭集中最小的:

给定任意闭集\( K \supseteq E \), \( \forall x \in \overline{E} \),我们证明\( x \in K \),这里\( x \)为\( E \)的附着点,可得\( \forall r > 0, B(x, r) \cap E \neq \empty \),而\( K \supseteq E \),于是也有\( B(x, r) \cap K \neq \empty \),综上有\( x \)也为\( K \)的附着点,而\( K \)是闭集,它包含自身所有的附着点,可得\( x \in K \),至此可得\( X \subseteq K \),即\( K \supseteq X \)。

证毕。

练习1.2.4

题目:

Let \( (X, d) \) be a metric space, \( x_0 \) be a point in \( X \), and \( r > 0 \). Let \( B \) be the open ball \( B := B(x_0, r) = \{ x \in X : d(x, x_0) < r \} \), and let \( C \) be the closed ball \( C := \{ x \in X : d(x, x_0) \leq r \} \).

  1. Show that \( \overline{B} \subseteq C \).
  2. Give an example of a metric space \( (X, d) \), a point \( x_0 \), and a radius \( r > 0 \) such that \( \overline{B} \) is not equal to \( C \).

解答:

证明1:

\( \forall x \in \overline{B} \),假设\( d(x, x_0) > r \),则令\( r' = d(x, x_0) - r \),则\( \forall y \in B(x, r') \),有\( d(y, x) < r' \),假设\( d(y, x_0) < r \),则\( d(x, x_0) \leq d(x, y) + d(y, x_0) < r' + r = d(x, x_0) \),也就是\( d(x, x_0) < d(x, x_0) \),矛盾,因此假设不成立,有\( d(y, x_0) \geq r \),于是可得\( y \notin B \),综上有\( B(x, r') \cap B = \empty \),这意味着\( x \)不是\( B \)的附着点,有\( x \notin \overline{B} \),矛盾,因此一开始的假设不成立,有\( d(x, x_0) \leq r \),至此可得\( x \in C \),综上,有\( \overline{B} \subseteq C \)。

证毕。

解答2:

令\( X \)为任意有两个或者两个以上元素的集合,令\( d = d_{\text{disc}} \),任取\( x_0 \in X \),令\( r = 1, B = B(x_0, r) = \{ x_0 \}, C = \{ x \in X : d(x, x_0) \leq r \} = X \),由定理1.2.15(d)可得,\( B = \{ x_0 \} \)是闭集,再由\( \overline{B} \)是最小的闭集,可得\( \overline{B} = B \),而\( C = X \)且\( X \)有两个或者以上的元素,但\( \overline{B} \)只有一个元素,有\( \overline{B} \neq C \)。

章节1.3

练习1.3.1

题目:

Prove Proposition 1.3.4(2).

Proposition 1.3.4的内容:

Let \( (X, d) \) be a metric space, let \( Y \) be a subset of \( X \), and let \( E \) be a subset of \( Y \).

  1. \( E \) is relatively open with respect to \( Y \) if and only if \( E = V \cap Y \) for some set \( V \subseteq X \) which is open in \( X \).
  2. \( E \) is relatively closed with respect to \( Y \) if and only if \( E = K \cap Y \) for some set \( K \subseteq X \) which is closed in \( X \).

证明:

必要性:

\( E \)相对\( Y \)是相对闭集当且仅当\( Y \setminus E \)相对\( Y \)是相对开集,进而由定理1.3.4(1),可得\( E \)相对\( Y \)是相对闭集当且仅当\( \exists X \)下的开集\( V \subseteq X \)满足\( Y \setminus E = V \cap Y \),令\( K = X \setminus V \),我们证明\( E = K \cap Y \)。

先证明\( K \cap Y \subseteq E \),\( \forall x \in K \cap Y \),可得\( x \in K, x \in Y \),由\( K \)的定义,可得\( x \in X, x \notin V \),于是有\( x \notin V \cap Y = Y \setminus E \),这里\( x \notin Y \setminus E \)加上\( x \in Y \),意味着\( x \in E \),综上,有\( K \cap Y \subseteq E \)。

接着证明\( E \subseteq K \cap Y \),\( \forall x \in E \),由\( E \subseteq Y \subseteq X \),可得\( x \in X \),另外由\( x \in E \),可得\( x \notin Y \setminus E = V \cap Y \),这意味着\( x \notin V \)或者\( x \notin Y \),但是\( E \subseteq Y \),我们知道\( x \in Y \),于是只剩下\( x \notin V \)这个可能性,加上之前得到的\( x \in X \),可得\( x \in X \setminus V = K \),至此加上已有的\( x \in Y \),可得\( x \in K \cap Y \),综上,有\( E \subseteq K \cap Y \)。

至此可得,\( E = K \cap Y \)。

充分性:

由\( \exists X \)下的闭集\( K \subseteq X \)满足\( E = K \cap Y \),可得\( X \setminus K \)为\( X \)下的开集,令\( V = X \setminus K \),由定理1.3.4(1),可得\( V \cap Y \)相对\( Y \)是相对开集,进而可得,\( Y \setminus (V \cap Y) = (Y \setminus V) \cup (Y \setminus Y) = (Y \setminus V) \cup \empty = Y \setminus V \)相对\( Y \)是相对闭集。

我们现在证明\( E = Y \setminus V \),从而说明\( E \)相对\( Y \)是相对闭集:

先证明\( E \subseteq Y \setminus V \): \( \forall x \in E = K \cap Y \),我们有\( x \in K, x \in Y \),这里由\( x \in K \),可得\( x \notin X \setminus K = V \),加上\( x \in Y \),可得\( x \in Y \setminus V \),综上,有\( E \subseteq Y \setminus V \)。

接着证明\( Y \setminus V \subseteq E \): \( \forall x \in Y \setminus V \),有\( x \in Y, x \notin V \),由\( x \notin V = X \setminus K \),可得\( x \notin X \)或者\( x \in K \),又\( Y \subseteq X \),可得\( x \in X \),于是只剩下\( x \in K \)这种可能性,加上\( x \in Y \),可得\( x \in K \cap Y = E \),综上,有\( Y \setminus V \subseteq E \)。

至此可得,\( E = Y \setminus V \),加上\( Y \setminus V \)相对\( Y \)是相对闭集,可得,\( E \)相对\( Y \)是相对闭集。

证毕。

章节1.4

练习1.4.1

题目:

Prove Lemma 1.4.3. (Hint: review your proof of Proposition 6.6.5.)

Lemma 1.4.3的内容:

Let \( (x^{(n)})_{n = m}^{\infty} \) be a sequence in \( (X, d) \) which converges to some limit \( x_0 \). Then every subsequence \( (x^{(n_j)})_{j = 1}^{\infty} \) of that sequence also converges to \( x_0 \).

证明:

\( \forall (x^{(n)})_{n = m}^{\infty} \)的子序列\( (x^{(n_j)})_{j = 1}^{\infty} \), \( \forall \epsilon > 0 \),由\( (x^{(n)})_{n = m}^{\infty} \)收敛于\( x_0 \),可得\( \exists N \geq m, \forall n \geq N \),有\( d(x^{(n)}, x_0) \leq \epsilon \),而\( \forall j \geq N \),有\( n_j \geq n_N \geq N \),可得\( d(x^{(n_j)}, x_0) \leq \epsilon \),综上,有\( (x^{(n_j)})_{j = 1}^{\infty} \)收敛于\( x_0 \)。

证毕。

练习1.4.2

题目:

Prove Proposition 1.4.5. (Hint: review your proof of Proposition 6.6.6.)

Proposition 1.4.5的内容:

Let \( (x^{(n)})_{n = m}^{\infty} \) be a sequence of points in a metric space \( (X, d) \), and let \( L \in X \). Then the following are equivalent:

  1. \( L \) is a limit point of \( (x^{(n)})_{n = m}^{\infty} \).
  2. There exists a subsequence \( (x^{(n_j)})_{j = 1}^{\infty} \) of the original sequence \( (x^{(n)})_{n = m}^{\infty} \) which converges to \( L \).

证明:

证明\( 1 \Longrightarrow 2 \):

我们递归定义子序列\( (x^{(n_j)})_{j = 1}^{\infty} \),归纳假设\( \forall 1 \leq j' < j \),我们有\( n_{j'} \)已定义且满足\( d(x^{(n_{j'})}, L) \leq \dfrac{1}{j'}, m \leq n_1 < n_2 < \dots < n_{j'} \),我们定义\( n_j \),如果\( j = 1 \),则令\( N_j = m \),否则的话,有\( j > 1 \),此时\( \{ k : 1 \leq k < j \} \)非空,令\( N_j = \max \{ n_k : 1 \leq k < j \} + 1 \),由\( L \)是\( (x^{(n)})_{n = m}^{\infty} \)的极限点,可得\( \exists n \geq N_j \),使得\( d(x^{(n)}, L) \leq \dfrac{1}{j} \),令\( n_j = n \),有\( d(x^{(n_j)}, L) \leq \dfrac{1}{j} \),以及\( m \leq n_1 < n_2 < \dots < n_j \),递归定义完毕。

现在证明\( (x^{(n_j)})_{j = 1}^{\infty} \)收敛于\( L \), \( \forall \epsilon > 0, \exists j \geq 1 \)满足\( \dfrac{1}{j} \leq \epsilon \),于是\( \forall k \geq j \),有\( d(x^{(n_k)}, L) \leq \dfrac{1}{k} \leq \dfrac{1}{j} \leq \epsilon \),综上,有子序列\( (x^{(n_j)})_{j = 1}^{\infty} \)收敛于\( L \)。

证明\( 2 \Longrightarrow 1 \):

\( \forall \epsilon > 0, \forall N \geq m \),由子序列\( (x^{(n_j)})_{j = 1}^{\infty} \)收敛于\( L \),可得\( \exists K \geq 1 \)满足\( \forall k \geq K, d(x^{(n_k)}, L) \leq \epsilon \),取\( j = \max(K, N) \),则有\( n_j \geq j \geq N \)以及\( d(x^{(n_j)}, L) \leq \epsilon \),综上,有\( L \)为\( (x^{(n)})_{n = m}^{\infty} \)的极限点。

证毕。

练习1.4.3

题目:

Prove Lemma 1.4.7. (Hint: review your proof of Proposition 6.1.12.)

Lemma 1.4.7的内容:

(Convergent sequences are Cauchy sequences) Let \( (x^{(n)})_{n = m}^{\infty} \) be a sequence in \( (X, d) \) which converges to some limit \( x_0 \). Then \( (x^{(n)})_{n = m}^{\infty} \) is also a Cauchy sequence.

证明:

\( \forall \epsilon > 0 \),由\( (x^{(n)})_{n = m}^{\infty} \)收敛于\( x_0 \),可得\( \exists N \geq m, \forall n \geq N, d(x^{(n)}, x_0) \leq \dfrac{\epsilon}{3} < \dfrac{\epsilon}{2} \),进而可得\( \forall j, k \geq N \),有\( d(x^{(j)}, x^{(k)}) \leq d(x^{(j)}, x_0) + d(x_0, x^{(k)}) < \dfrac{\epsilon}{2} + \dfrac{\epsilon}{2} = \epsilon \),综上,有\( (x^{(n)})_{n = m}^{\infty} \)为柯西序列。

证毕。

练习1.4.4

题目:

Prove Lemma 1.4.9.

Lemma 1.4.9的内容:

Let \( (x^{(n)})_{n = m}^{\infty} \) be a Cauchy sequence in \( (X, d) \). Suppose that there is some subsequence \( (x^{(n_j)})_{j = 1}^{\infty} \) of this sequence which converges to a limit \( x_0 \) in \( X \). Then the original sequence \( (x^{(n)})_{n = m}^{\infty} \) also converges to \( x_0 \).

证明:

\( \forall \epsilon > 0 \),由\( (x^{(n_j)})_{j = 1}^{\infty} \)收敛于\( x_0 \),可得\( \exists N_1 \geq 1, \forall j \geq N_1, d(x^{(n_j)}, x_0) \leq \dfrac{\epsilon}{2} \),再由\( (x^{(n)})_{n = m}^{\infty} \)是柯西序列,可得\( \exists N_2 \geq m, \forall j, k \geq N_2, d(x^{(j)}, x^{(k)}) < \dfrac{\epsilon}{2} \),取\( N = \max(N_1, N_2) \),则\( \forall n \geq N \),有\( d(x^{(n)}, x_0) \leq d(x^{(n)}, x^{(n_{N_1})}) + d(x^{(n_{N_1})}, x_0) < \dfrac{\epsilon}{2} + \dfrac{\epsilon}{2} = \epsilon \),综上,有\( (x^{(n)})_{n = m}^{\infty} \)也收敛于\( x_0 \)。

证毕。

练习1.4.5

题目:

Let \( (x^{(n)})_{n = m}^{\infty} \) be a sequence of points in a metric space \( (X, d) \), and let \( L \in X \). Show that if \( L \) is a limit point of the sequence \( (x^{(n)})_{n = m}^{\infty} \), then L is an adherent point of the set \( \{ x^{(n)} : n \geq m \} \). Is the converse true?

解答:

证明如果是上述序列的极限点,则是上述集合附着点:

\( \forall r > 0 \),由\( L \)是\( (x^{(n)})_{n = m}^{\infty} \)的极限点,可得\( \exists n \geq m \),满足\( d(x^{(n)}, L) \leq \dfrac{r}{2} < r \),加上\( x^{(n)} \in X \),可得\( x^{(n)} \in B(L, r) \),又明显有\( x^{(n)} \in \{ x^{(n)} : n \geq m \} \),可得\( x^{(n)} \in B(L, r) \cap \{ x^{(n)} : n \geq m \} \),进而可得,\( B(L, r) \cap \{ x^{(n)} : n \geq m \} \neq \empty \),综上,有\( L \)为\( \{ x^{(n)} : n \geq m \} \)的附着点。

证毕。

反命题为真吗?

不为真,举个例子,令\( x^{(n)} = \dfrac{1}{n} \),则\( \dfrac{1}{1} = 1 \)为序列的附着点,但是\( \dfrac{1}{1} = 1 \)明显不是序列的极限点。

练习1.4.6

题目:

Show that every Cauchy sequence can have at most one limit point.

证明:

给定任意柯西序列\( (x^{(n)})_{n = m}^{\infty} \),假设它有两个或者两个以上的极限点,任取它的两个极限点\( x_1, x_2 \), \( \forall \epsilon > 0 \),由\( (x^{(n)})_{n = m}^{\infty} \)是柯西序列,可得\( \exists N \geq m, \forall j, k \geq N, d(x^{(j)}, x^{(k)}) < \dfrac{\epsilon}{3} \),再由\( x_1 \)是\( (x^{(n)})_{n = m}^{\infty} \)的极限点,可得\( \exists n_1 \geq N, d(x^{(n_1)}, x_1) \leq \dfrac{\epsilon}{3} \),同理由\( x_2 \)是\( (x^{(n)})_{n = m}^{\infty} \)的极限点,可得\( \exists n_2 \geq N, d(x^{(n_2)}, x_2) \leq \dfrac{\epsilon}{3} \),由\( n_1 \geq N, n_2 \geq N \),可得\( d(x^{(n_1)}, x^{(n_2)}) < \epsilon \),于是可得\( d(x_1, x_2) \leq d(x_1, x^{(n_1)}) + d(x^{(n_1)}, x_2) \leq d(x_1, x^{(n_1)}) + d(x^{(n_1)}, x^{(n_2)}) + d(x^{(n_2)}, x_2) < \dfrac{\epsilon}{3} + \dfrac{\epsilon}{3} + \dfrac{\epsilon}{3} = \epsilon \),简而言之,\( \forall \epsilon > 0 \),有\( d(x_1, x_2) < \epsilon \),可得\( x_1 = x_2 \)。

证毕。

练习1.4.7

题目:

Prove Proposition 1.4.12.

Proposition 1.4.12的内容:

  1. Let \( (X, d) \) be a metric space, and let \( (Y, d|_{Y \times Y}) \) be a subspace of \( (X, d) \). If \( (Y, d|_{Y \times Y}) \) is complete, then \( Y \) must be closed in \( X \).
  2. Conversely, suppose that \( (X, d) \) is a complete metric space, and \( Y \) is a closed subset of \( X \). Then the subspace \( (Y, d|_{Y \times Y}) \) is also complete.

证明:

证明1:

\( \forall (Y, d|_{Y \times Y}) \)上的收敛序列\( (x^{(n)})_{n = m}^{\infty} \),由引理1.4.7,可得\( (x^{(n)})_{n = m}^{\infty} \)是柯西序列,进而由\( (Y, d|_{Y \times Y}) \)是完备度量空间,可得\( \lim_{n \to \infty} x^{(n)} \in Y \),此时由\( d \)和\( d|_{Y \times Y} \)在\( Y \times Y \)上一致,可得在\( (X, d) \)上,也有\( (x^{(n)})_{n = m}^{\infty} \)收敛且\( \lim_{n \to \infty} x^{(n)} \in Y \),此时根据定理1.2.15的(b),可得\( Y \)是闭合集。

证明2:

\( \forall (Y, d|_{Y \times Y}) \)上的柯西序列\( (x^{(n)})_{n = m}^{\infty} \),由\( d \)和\( d|_{Y \times Y} \)在\( Y \times Y \)上一致,可得\( (x^{(n)})_{n = m}^{\infty} \)也是\( (X, d) \)上的柯西序列,再由\( (X, d) \)是完备度量空间,可得\( (x^{(n)})_{n = m}^{\infty} \)收敛于\( (X, d) \),此时根据\( Y \)是闭合集以及定理1.2.15的(b),可得\( \lim_{n \to \infty} x^{(n)} \in Y \),再次根据\( d \)和\( d|_{Y \times Y} \)在\( Y \times Y \)上一致,可得在\( (Y, d|_{Y \times Y}) \)上,也有\( (x^{(n)})_{n = m}^{\infty} \)收敛且\( \lim_{n \to \infty} x^{(n)} \in Y \),综上,有\( (Y, d|_{Y \times Y}) \)是完备度量空间。

证毕。

练习1.4.8

题目:

The following construction generalizes the construction of the reals from the rationals in Chap.5, allowing one to view any metric space as a subspace of a complete metric space. In what follows we let \( (X, d) \) be a metric space.

  1. Given any Cauchy sequence \( (x_n)_{n = 1}^{\infty} \) in \( X \), we introduce the formal limit \( \text{LIM}_{n \to \infty} x_n \). We say that two formal limits \( \text{LIM}_{n \to \infty} x_n \) and \( \text{LIM}_{n \to \infty} y_n \) are equal if \( \lim_{n \to \infty} d(x_n, y_n) \) is equal to zero. Show that this equality relation obeys the reflexive, symmetry, and transitive axioms.
  2. Let \( \overline{X} \) be the space of all formal limits of Cauchy sequences in \( X \), with the above equality relation. Define a metric \( d_{\overline{X}}: \overline{X} \times \overline{X} \to [0, +\infty) \) by setting \( d_{\overline{X}}(\text{LIM}_{n \to \infty} x_n, \text{LIM}_{n \to \infty} y_n) := \lim_{n \to \infty} d(x_n, y_n) \). Show that this function is well-defined (this means not only that the limit \( \lim_{n \to \infty} d(x_n, y_n) \) exists, but also that the axiom of substitution is obeyed; cf. Lemma 5.3.7) and gives \( \overline{X} \) the structure of a metric space.
  3. Show that the metric space \( (\overline{X}, d_{\overline{X}}) \) is complete.
  4. Show that the closure of X in \( \overline{X} \) is \( \overline{X} \) (which explains the choice of notation \( \overline{X} \)).
  5. Show that the formal limit agrees with the actual limit, thus if \( (x_n)_{n = 1}^{\infty} \) is any Cauchy sequence in \( X \), then we have \( \lim_{n \to \infty} x_n = \text{LIM}_{n \to \infty} x_n \) in \( \overline{X} \).

证明:

证明1:

证明满足自反性:

\( \forall X \)上的柯西序列\( (x_n)_{n = 1}^{\infty} \),我们有\( \lim_{n \to \infty} d(x_n, x_n) = \lim_{n \to \infty} 0 = 0 \),于是有\( \text{LIM}_{n \to \infty} x_n = \text{LIM}_{n \to \infty} x_n \)。

证明满足对称性:

\( \forall X \)上的柯西序列\( (x_n)_{n = 1}^{\infty}, (y_n)_{n = 1}^{\infty} \),如果\( \text{LIM}_{n \to \infty} x_n = \text{LIM}_{n \to \infty} y_n \), 则有\( \lim_{n \to \infty} (d(x_n, y_n) = d(y_n, x_n)) = 0 \),于是有\( \text{LIM}_{n \to \infty} y_n = \text{LIM}_{n \to \infty} x_n \)。

证明满足传递性:

\( \forall X \)上的柯西序列\( (x_n)_{n = 1}^{\infty}, (y_n)_{n = 1}^{\infty}, (z_n)_{n = 1}^{\infty} \),如果\( \text{LIM}_{n \to \infty} x_n = \text{LIM}_{n \to \infty} y_n, \text{LIM}_{n \to \infty} y_n = \text{LIM}_{n \to \infty} z_n \), 则可得\( \lim_{n \to \infty} d(x_n, y_n) = 0, \lim_{n \to \infty} d(y_n, z_n) = 0 \),进而可得\( \lim_{n \to \infty} (d(x_n, y_n) + d(y_n, z_n)) = 0 \),而\( 0 \leq d(x_n, z_n) \leq d(x_n, y_n) + d(y_n, z_n) \),由推论I.6.4.14(Squeeze test),可得\( \lim_{n \to \infty} d(x_n, z_n) = 0 \),于是有\( \text{LIM}_{n \to \infty} x_n = \text{LIM}_{n \to \infty} z_n \)。

证明2:

给定\( X \)上的柯西序列\( (x_n)_{n = 1}^{\infty}, (y_n)_{n = 1}^{\infty} \)。

证明\( \lim_{n \to \infty} d(x_n, y_n) \)存在:

直接利用\( \mathbf{R} \)与它的常规度量共同组成完备度量空间这点,我们证明\( (d(x_n, y_n))_{n = 1}^{\infty} \)是柯西序列就行。

\( \forall \epsilon > 0 \),由\( (x_n)_{n = 1}^{\infty} \)是柯西序列,可得\( \exists N_1 \geq 1, \forall j, k \geq N_1, d(x_j, x_k) < \dfrac{\epsilon}{2} \),由\( (y_n)_{n = 1}^{\infty} \)是柯西序列,可得\( \exists N_2 \geq 1, \forall j, k \geq N_2, d(y_j, y_k) < \dfrac{\epsilon}{2} \),取\( N = \max(N_1, N_2) \),则\( \forall j, k \geq N \),有\( d(d(x_j, y_j), d(x_k, y_k)) = |d(x_j, y_j) - d(x_k, y_k)| \leq |d(x_j, y_j)| + |-d(x_k, y_k)| = d(x_j, y_j) + d(x_k, y_k) < \epsilon \),至此可得,\( (d(x_n, y_n))_{n = 1}^{\infty} \)是柯西序列,进而由\( \mathbf{R} \)与它的常规度量共同组成完备度量空间这点,可得\( (d(x_n, y_n))_{n = 1}^{\infty} \)收敛,即\( \lim_{n \to \infty} d(x_n, y_n) \)存在。

证明\( d_{\overline{X}} \)满足代入公理:

给定\( X \)上的柯西序列\( (x_n)_{n = 1}^{\infty}, (y_n)_{n = 1}^{\infty}, (z_n)_{n = 1}^{\infty}, (w_n)_{n = 1}^{\infty} \),如果\( \text{LIM}_{n \to \infty} x_n = \text{LIM}_{n \to \infty} y_n, \text{LIM}_{n \to \infty} z_n = \text{LIM}_{n \to \infty} w_n \),则我们要证明\( d_{\overline{X}}(\text{LIM}_{n \to \infty} x_n, \text{LIM}_{n \to \infty} z_n) = d_{\overline{X}}(\text{LIM}_{n \to \infty} y_n, \text{LIM}_{n \to \infty} w_n) \),也就是我们得证明\( \lim_{n \to \infty} d(x_n, z_n) = \lim_{n \to \infty} d(y_n, w_n) \)。

这里的思路是,由\( \text{LIM}_{n \to \infty} x_n = \text{LIM}_{n \to \infty} y_n \),可得\( d(x_n, z_n) \)最终会和\( d(y_n, z_n) \)值差不多,再由\( \text{LIM}_{n \to \infty} z_n = \text{LIM}_{n \to \infty} w_n \),可得\( d(y_n, z_n) \)最终会和\( d(y_n, w_n) \)值差不多,连起来就是\( d(x_n, z_n) \)最终会和\( d(y_n, w_n) \)值差不多,这是我们想要的,所谓的“值差不多”通过两者相减极限为\( 0 \)来刻画。

\( \forall \epsilon > 0 \),由\( (x_n)_{n = 1}^{\infty} \)收敛于\( \lim_{n \to \infty} d(x_n, z_n) \),可得\( \exists N_1 \geq 1, \forall n \geq N_1, |d(x_n, z_n) - \lim_{n \to \infty} d(x_n, z_n)| \leq \dfrac{\epsilon}{4} \),可得\( -\dfrac{\epsilon}{4} + \lim_{n \to \infty} d(x_n, z_n) \leq d(x_n, z_n) \leq \dfrac{\epsilon}{4} + \lim_{n \to \infty} d(x_n, z_n) \),由\( \text{LIM}_{n \to \infty} x_n = \text{LIM}_{n \to \infty} y_n \),可得\( \lim_{n \to \infty} d(x_n, y_n) = 0 \),进而可得\( \exists N_2 \geq 1, \forall n \geq N_2, d(x_n, y_n) \leq \dfrac{\epsilon}{4} \),取\( N_3 = \max(N_1, N_2) \),则\( \forall n \geq N_3 \),有\( d(y_n, z_n) \leq d(y_n, x_n) + d(x_n, z_n) \leq \dfrac{\epsilon}{4} + \dfrac{\epsilon}{4} + \lim_{n \to \infty} d(x_n, z_n) = \dfrac{\epsilon}{2} + \lim_{n \to \infty} d(x_n, z_n) \),还有\( d(x_n, z_n) \leq d(x_n, y_n) + d(y_n, z_n) \leq \dfrac{\epsilon}{4} + d(y_n, z_n) \),也就是\( d(x_n, z_n) \leq \dfrac{\epsilon}{4} + d(y_n, z_n) \),可得\( -\dfrac{\epsilon}{4} + d(x_n, z_n) \leq d(y_n, z_n) \),又\( -\dfrac{\epsilon}{4} + \lim_{n \to \infty} d(x_n, z_n) \leq d(x_n, z_n) \),可得\(-\dfrac{\epsilon}{4} + (-\dfrac{\epsilon}{4} + \lim_{n \to \infty} d(x_n, z_n)) \leq d(y_n, z_n) \),也就是\( -\dfrac{\epsilon}{2} + \lim_{n \to \infty} d(x_n, z_n) \leq d(y_n, z_n) \),加上前面得到的\( d(y_n, z_n) \leq \dfrac{\epsilon}{2} + \lim_{n \to \infty} d(x_n, z_n) \),可得\( |d(y_n, z_n) - \lim_{n \to \infty} d(x_n, z_n)| \leq \dfrac{\epsilon}{2} \),进而可得\( -\dfrac{\epsilon}{2} + \lim_{n \to \infty} d(x_n, z_n) \leq d(y_n, z_n) \leq \dfrac{\epsilon}{2} + \lim_{n \to \infty} d(x_n, z_n) \),由\( \text{LIM}_{n \to \infty} z_n = \text{LIM}_{n \to \infty} w_n \),可得\( \lim_{n \to \infty} d(z_n, w_n) = 0 \),进而可得\( \exists N_4 \geq 1, \forall n \geq N_4, d(z_n, w_n) \leq \dfrac{\epsilon}{2} \),取\( N_5 = \max(N_3, N_4) \),则\( \forall n \geq N_5 \),有\( d(y_n, w_n) \leq d(y_n, z_n) + d(z_n, w_n) \leq \dfrac{\epsilon}{2} + \lim_{n \to \infty} d(x_n, z_n) + \dfrac{\epsilon}{2} = \epsilon + \lim_{n \to \infty} d(x_n, z_n) \),还有\( d(y_n, z_n) \leq d(y_n, w_n) + d(w_n, z_n) \leq d(y_n, w_n) + \dfrac{\epsilon}{2} \),也就是\( d(y_n, z_n) \leq d(y_n, w_n) + \dfrac{\epsilon}{2} \),可得\( -\dfrac{\epsilon}{2} + d(y_n, z_n) \leq d(y_n, w_n) \),又\( -\dfrac{\epsilon}{2} + \lim_{n \to \infty} d(x_n, z_n) \leq d(y_n, z_n) \),可得\( -\dfrac{\epsilon}{2} + (-\dfrac{\epsilon}{2} + \lim_{n \to \infty} d(x_n, z_n)) \leq d(y_n, w_n) \),也就是\( -\epsilon + \lim_{n \to \infty} d(x_n, z_n) \leq d(y_n, w_n) \),加上前面得到的\( d(y_n, w_n) \leq \epsilon + \lim_{n \to \infty} d(x_n, z_n) \),可得\( |d(y_n, w_n) - \lim_{n \to \infty} d(x_n, z_n)| \leq \epsilon \)。简而言之,有\( \forall \epsilon, \exists N \geq 1, \forall n \geq N, |d(y_n, w_n) - \lim_{n \to \infty} d(x_n, z_n)| \leq \epsilon \),于是可得\( \lim_{n \to \infty} d(y_n, w_n) = \lim_{n \to \infty} d(x_n, z_n) \)。

证明3:

给定任意\( (\overline{X}, d_{\overline{X}}) \)上的柯西序列\( (Y_n)_{n = 1}^{\infty} \),这里\( \forall n \geq 1 \),针对\( Y_n \),均有\( \exists X \)上的柯西序列\( (x_n^{(k)})_{k = 1}^{\infty} \)使得 \( Y_n = \text{LIM}_{k \to \infty} x_n^{(k)} \),这里\( (x_n^{(k)})_{k = 1}^{\infty} \)为柯西序列,可得\( \exists N_{n'} \geq 1, \forall j_1, j_2 \geq N_{n'}, d(x_n^{(j_1)}, x_n^{(j_2)}) < \dfrac{1}{n} \),令\( N_n = \max(N_{n'}, n) \),则还是有\( \forall k \geq N_n, d(x_n^{(k)}, x_n^{(N_n)}) < \dfrac{1}{n} \),且同时有\( N_n \geq n \),令\( y_n = x_n^{(N_n)} \),这里,我们隐式通过选择公理构造出了序列\( (y_n)_{n = 1}^{\infty} \),下面,我们会证明\( (y_n)_{n = 1}^{\infty} \)是\( X \)上的柯西序列,且\( (Y_n)_{n = 1}^{\infty} \)收敛于\( \text{LIM}_{n \to \infty} y_n \)。

先证明\( (y_n)_{n = 1}^{\infty} \)是\( X \)上的柯西序列, \( \forall \epsilon > 0, \) 由\( (Y_n)_{n = 1}^{\infty} \)为\( \overline{X} \)上的柯西序列,可得\( \exists K \geq 1, \forall j_1, j_2 \geq K, d_{\overline{X}}(Y_{j_1}, Y_{j_2}) = \lim_{k \to \infty} d(x_{j_1}^{(k)}, x_{j_2}^{(k)}) < \dfrac{\epsilon}{2} \)。还有\( \exists N \geq K \)满足\( \dfrac{1}{N} < \dfrac{\epsilon}{4} \),此时针对\( \forall i, j \geq N \),则\( \forall k \geq \max(N_i, N_j) \),有\( d(y_i, y_j) = d(x_i^{(N_i)}, x_j^{(N_j)}) \leq d(x_i^{(N_i)}, x_i^{(k)}) + d(x_i^{(k)}, x_j^{(k)}) + d(x_j^{(k)}, x_j^{(N_j)}) \leq \dfrac{1}{N_i} + d(x_i^{(k)}, x_j^{(k)}) + \dfrac{1}{N_j} \leq \dfrac{1}{N} + d(x_i^{(k)}, x_j^{(k)}) + \dfrac{1}{N} < \dfrac{\epsilon}{4} + d(x_i^{(k)}, x_j^{(k)}) + \dfrac{\epsilon}{4} = \dfrac{\epsilon}{2} + d(x_i^{(k)}, x_j^{(k)}) \) (注:这里用到了\( N_i \geq i \geq N \),从而\( \dfrac{1}{N_i} \leq \dfrac{1}{N} \),\( N_j \)也类似),这里由于\( i, j \geq N \geq K \),根据前面,可得\( \lim_{k \to \infty} d(x_{i}^{(k)}, x_{k}^{(k)}) < \dfrac{\epsilon}{2} \),这意味着\( \exists k_1 \geq 1, \forall k \geq k_1, d(x_{i}^{(k)}, x_{k}^{(k)}) < \dfrac{\epsilon}{2} \),特别的,取\( k_2 = \max(k_1, N_i, N_j) \),我们有\( d(x_i^{(N_i)}, x_j^{(N_j)}) \leq \dfrac{\epsilon}{2} + d(x_i^{(k_2)}, x_j^{(k_2)}) < \dfrac{\epsilon}{2} + \dfrac{\epsilon}{2} = \epsilon \)。简而言之,\( \forall \epsilon > 0, \exists N \geq 1, \forall i, j \geq N, d(y_i, y_j) < \epsilon \),可得\( (y_n)_{n = 1}^{\infty} \)是\( X \)上的柯西序列。

接着证明\( (Y_n)_{n = 1}^{\infty} \)收敛于\( \text{LIM}_{n \to \infty} y_n \),令\( L = \text{LIM}_{n \to \infty} y_n \), \( \forall \epsilon > 0 \),我们得证明\( \exists N \geq 1, \forall n \geq N, d_{\overline{X}}(Y_n, L) = \lim_{k \to \infty} d(x_{n}^{(k)}, y_k) < \epsilon \)。 \( \forall \epsilon > 0 \),可得\( \exists N_1 \geq 1, \dfrac{1}{N_1} < \dfrac{\epsilon}{2} \),由\( (y_n)_{n = 1}^{\infty} \)是\( X \)上的柯西序列,可得\( \exists N_2 \geq 1, \forall j_1, j_2 \geq N_2, d(y_j, y_k) < \dfrac{\epsilon}{2} \),取\( N_3 = \max(N_1, N_2) \),则\( \forall n \geq N_3 \),由\( y_n \)的定义,可得\( \forall k \geq \max(N_{n}, N_3) \),有\( d(x_n^{(k)}, y_n) < \dfrac{1}{n} < \dfrac{\epsilon}{2} \),可得\( d(x_n^{(k)}, y_k) \leq d(x_n^{(k)}, y_n) + d(y_n, y_k) < \dfrac{\epsilon}{2} + \dfrac{\epsilon}{2} = \epsilon \) 这意味着\( \lim_{k \to \infty} d(x_{n}^{(k)}, y_k) < \epsilon \)。简而言之,\( \forall \epsilon > 0 \),我们证明了\( \exists N \geq 1, \forall n \geq N, d_{\overline{X}}(Y_n, L) = \lim_{k \to \infty} d(x_{n}^{(k)}, y_k) < \epsilon \),可得\( (Y_n)_{n = 1}^{\infty} \)收敛于\( L \)。

证明4:

令\( Y \)为\( X \)在\( \overline{X} \)上的闭包,我们要证明\( Y = \overline{X} \),显然有\( Y \subseteq \overline{X} \),还得证明\( \overline{X} \subseteq Y \), \( \forall y \in \overline{X} \),可得存在\( X \)上的柯西序列\( (x_n)_{n = 1}^{\infty} \) 使得\( \text{LIM}_{n \to \infty} x_n = y \),为了证明\( y \in Y \),我们得证明\( y \)是\( X \)的附着点(注意,得在度量\( d_{\overline{X}} \)的标准下,而不是\( d \)下), \( \forall r > 0 \),由\( (x_n)_{n = 1}^{\infty} \)为柯西序列,可得\( \exists N \geq 1, \forall n \geq N, d(x_n, x_N) < \dfrac{r}{2} \),进而由推论I.6.4.14(Squeeze test),可得\( \lim_{n \to \infty} d(x_n, x_N) \leq \dfrac{r}{2} \),此时有\( d_{\overline{X}}(y, x_N) = d_{\overline{X}}(y, \text{LIM}_{n \to \infty} x_N) = \lim_{n \to \infty} d(x_n, x_N) \leq \dfrac{r}{2} < r \),可得\( x_N \in B_{(\overline{X}, d_{\overline{X}})}(y, r) \),又\( x_N \in X \),这意味着\( B_{(\overline{X}, d_{\overline{X}})}(y, r) \cap X \neq \empty \),可得\( y \)是\( X \)的附着点,有\( y \in \overline{X} \),至此有\( \overline{X} \subseteq Y \),综上有\( Y = \overline{X} \)。

证明5:

由4以及\( (x_n)_{n = 1}^{\infty} \)为柯西序列,可得\( \lim_{n \to \infty} x_n \)在\( (\overline{X}, d_{\overline{X}}) \)上存在(注:严格来讲,\( (x_n)_{n = 1}^{\infty} \)本身是\( (X, d) \)上的序列,而我们这里指的是\( (x_n)_{n = 1}^{\infty} \)在\( (\overline{X}, d_{\overline{X}}) \)上对应的序列的极限存在,后者序列比前者序列“高”一层级,但两者是同构的,这里不区分这两个层级下对应的元素,实际上在4中我们已经这么干了),有\( \lim_{n \to \infty} x_n \in \overline{X} \),于是存在\( X \)上的柯西序列\( (y_n)_{n = 1}^{\infty} \)使得\( \lim_{n \to \infty} x_n = \text{LIM}_{n \to \infty} y_n \), \( \forall \epsilon > 0 \),由\( \lim_{n \to \infty} x_n = \text{LIM}_{n \to \infty} y_n \),可得\( \exists K_1 \geq 1, \forall k \geq K_1, d_{\overline{X}}(x_k, \text{LIM}_{n \to \infty} y_n) = \lim_{n \to \infty} d(x_k, y_n) \leq \dfrac{\epsilon}{2} \),进一步可得针对这个固定的\( k \),有\( \exists N_1 \geq 1, \forall n \geq N_1, d(x_k, y_n) \leq \dfrac{\epsilon}{2} \),而由\( (x_n)_{n = 1}^{\infty} \)为柯西序列,可得\( \exists N_2 \geq 1, \forall j_1, j_2 \geq N_2, d(x_{j_1}, x_{j_2}) < \dfrac{\epsilon}{2} \),于是\( \forall n \geq \max(K_1, N_1, N_2) \),取\( N_3 = \max(N_2, K_1) \),有\( d(x_n, y_n) \leq d(x_n, x_{N_3}) + d(x_{N_3}, y_n) < \dfrac{\epsilon}{2} + \dfrac{\epsilon}{2} = \epsilon \),至此可得\( d_{\overline{X}}(\text{LIM}_{n \to \infty} x_n, \text{LIM}_{n \to \infty} y_n) = \lim_{n \to \infty} d(x_n, y_n) = 0 \),根据1中相等的定义,可得\( \text{LIM}_{n \to \infty} x_n = \text{LIM}_{n \to \infty} y_n = \lim_{n \to \infty} x_n \)。

证毕。

未完待续,慢慢更新