第3章 章节3.2 练习3.2.4 题目: How many elements does \( S_3 \) have? 解答: 根据\( S_{i + 1} \)的定义,\( |S_{i + 1}| = 3 + 3|S_i| + |S_i|^3 \),于是从\( |S_0| = 0 \)开始慢慢
第2章 章节2.2 练习2.2.6 题目: Suppose we are given a relation \( R \) on a set \( S \). Define the relation \( R' \) as follows: \[ R' = R \cup \{ (s, s) \mid s \in S \} \text{.} \] That is, \( R' \) contains all the pairs in \( R \) plus
前言 我看了多本数学分析、微积分的书,陶哲轩的Analysis I是唯一一本把动机讲清楚的(且非常重视动机),同时作者会特别注意避免后向引用,即
附录B 版本 Analysis I(第3版)。 章节B.1 练习B.1.1 题目: The purpose of this exercise is to demonstrate that the procedure of long addition taught to you in elementary school is actually valid. Let \( A = a_n \dots a_0 \) and \( B = b_m \dots b_0 \) be positive integer
附录A 版本 Analysis I(第3版)。 章节A.1 练习A.1.1 题目: What is the negation of the statement “either X is true, or Y is true, but not both”? 解答: 命题“要么\( X \)为真,要么\( Y \)为
第11章 版本 Analysis I(第3版)。 章节11.1 练习11.1.1 题目: Prove Lemma 11.1.4. (Hint: in order to show that 1 implies 2 in the case when \( X \) is non-empty, consider the supremum and infimum of \( X \).) Lemma 11.1.4的内