目录

陶哲轩Analysis I习题的参考解答及思考(第6章)

第6章

版本

Analysis I(第3版)。

章节6.1

练习6.1.1

题目:

Let \( (a_n)_{n = 0}^{\infty} \) be a sequence of real numbers, such that \( a_{n + 1} > a_n \) for each natural number \( n \). Prove that whenever \( n \) and \( m \) are natural numbers such that \( m > n \), then we have \( a_m > a_n \). (We refer to these sequences as increasing sequences.)

证明:

令\( d = m - n - 1 \) ,因为\( m > n \),故\( d \geq 0 \),即\( d \)为自然数,下面对\( d \)进行数学归纳。

当\( d = 0 \)时,有\( n + 1 = m \),而\( a^{n + 1} = a_m > a_n \),成立。

归纳假设当\( d = k \)时成立,当\( d = k+\!+ \)时,\( n + k + 2 = m \),有\( (m - 1) - n - 1 = k \),根据归纳假设,有\( a^{m - 1} > a_n \),而\( a^m > a^{m - 1} \),故\( a^m > a_n \),即\( d = k+\!+ \)时成立,归纳完毕。

证毕。

练习6.1.2

题目:

Let \( (a_n)_{n = m}^{\infty} \) be a sequence of real numbers, and let \( L \) be a real number. Show that \( (a_n)_{n = m}^{\infty} \) converges to \( L \) if and only if, given any real \( \epsilon > 0 \), one can find an \( N \geq m \) such that \( |a_n − L| \leq \epsilon \) for all \( n \geq N \).

证明:

必要性:

如果\( (a_n)_{n = m}^{\infty} \)收敛,则\( \forall \epsilon > 0 \),有\( (a_n)_{n = m}^{\infty} \)最终\( \epsilon \)-接近\( L \),即\( \exists N \geq m \),满足\( (a_n)_{n = N}^{\infty} \) \( \epsilon \)-接近\( L \),这意味着\( \forall n \geq N, |a_n - L| \leq \epsilon \)。简而言之,\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |a_n - L| \leq \epsilon \)。

充分性:

如果\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |a_n - L| \leq \epsilon \),则有\( (a_n)_{n = N}^{\infty} \) \( \epsilon \)-接近\( L \),也就是\( (a_n)_{n = m}^{\infty} \)最终\( \epsilon \)-接近\( L \)。简而言之,\( \forall \epsilon > 0 \),有\( (a_n)_{n = m}^{\infty} \)最终\( \epsilon \)-接近\( L \),即\( (a_n)_{n = m}^{\infty} \)收敛。

证毕。

练习6.1.3

题目:

Let \( (a_n)_{n = m}^{\infty} \) be a sequence of real numbers, let \( c \) be a real number, and let \( m' \geq m \) be an integer. Show that \( (a_n)_{n = m}^{\infty} \) converges to \( c \) if and only if \( (a_n)_{n = m'}^{\infty} \) converges to \( c \).

证明:

必要性:

如果\( (a_n)_{n = m}^{\infty} \)收敛,则\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |a_n - c| \leq \epsilon \),取\( N' = \max(N, m') \),有\( N' \geq m' \),可得\( \forall n \geq N' \),有\( n \geq N \),进而有\( |a_n - c| \leq \epsilon \)。简而言之,\( \forall \epsilon > 0, \exists N' \geq m', \forall n \geq N', |a_n - c| \leq \epsilon \),即\( (a_n)_{n = m'}^{\infty} \)收敛。

充分性:

如果\( (a_n)_{n = m'}^{\infty} \)收敛,则\( \forall \epsilon > 0, \exists N \geq m', \forall n \geq N, |a_n - c| \leq \epsilon \),因为\( m' \geq m \),故\( N \geq m \)。简而言之,\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |a_n - c| \leq \epsilon \),即\( (a_n)_{n = m}^{\infty} \)收敛。

证毕。

练习6.1.4

题目:

Let \( (a_n)_{n = m}^{\infty} \) be a sequence of real numbers, let \( c \) be a real number, and let \( k \geq 0 \) be a non-negative integer. Show that \( (a_n)_{n = m}^{\infty} \) converges to \( c \) if and only if \( (a_{n + k})_{n = m}^{\infty} \) converges to \( c \).

证明:

必要性:

如果\( (a_n)_{n = m}^{\infty} \)收敛,则\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |a_n - c| \leq \epsilon \),而\( \forall n \geq N \),有\( n + k \geq n \geq N \),可得\( |a_{n + k} - c| \leq \epsilon \)。简而言之,\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |a_{n + k} - c| \leq \epsilon \),即\( (a_{n + k})_{n = m}^{\infty} \)收敛。

充分性:

如果\( (a_{n + k})_{n = m}^{\infty} \)收敛,则\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |a_{n + k} - c| \leq \epsilon \),取\( N' = N + k \),则\( \forall n \geq N' \),有\( n - k \geq N, |a_{(n - k) + k} - c| = |a_n - c| \leq \epsilon \)。简而言之,\( \forall \epsilon > 0, \exists N' \geq m, \forall n \geq N, |a_n - c| \leq \epsilon \),即\( (a_n)_{n = m}^{\infty} \)收敛。

证毕。

练习6.1.5

题目:

Prove Proposition 6.1.12. (Hint: use the triangle inequality, or Proposition 4.3.7.)

Proposition 6.1.12的内容:

(Convergent sequences are Cauchy). Suppose that \( (a_n)_{n = m}^{\infty} \) is a convergent sequence of real numbers. Then \( (a_n)_{n = m}^{\infty} \) is also a Cauchy sequence.

证明:

因为\( (a_n)_{n = m}^{\infty} \)收敛,记它收敛到\( c \),故 \( \forall \epsilon > 0 \),有\( \epsilon / 2 > 0 \),从而\( \exists N \geq m, \forall j, k \geq N, |a_j - c| \leq \epsilon / 2, |a_k - c| \leq \epsilon / 2 \),因为\( a_j \)和\( c \)\( (\epsilon / 2) \)-接近以及\( a_k \)和\( c \)\( (\epsilon / 2) \)-接近,可得\( a_j \)和\( a_k \) \( \epsilon \)-接近,即\( |a_j - a_k| \leq \epsilon \)。简而言之,\( \forall \epsilon > 0, \exists N \geq m, \forall j, k \geq N, |a_j - a_k| \leq \epsilon \),即\( (a_n)_{n = m}^{\infty} \)为柯西序列。

证毕。

练习6.1.6

题目:

Prove Proposition 6.1.15, using the following outline. Let \( (a_n)_{n = m}^{\infty} \) be a Cauchy sequence of rationals, and write \( L := \text{LIM}_{n \to \infty} a_n \). We have to show that \( (a_n)_{n = m}^{\infty} \) converges to \( L \). Let \( \epsilon > 0 \). Assume for sake of contradiction that sequence \( a_n \) is not eventually \( \epsilon \)-close to \( L \). Use this, and the fact that \( (a_n)_{n = m}^{\infty} \) is Cauchy, to show that there is an \( N \geq m \) such that either \( a_n > L + \epsilon / 2 \) for all \( n \geq N \), or \( a_n < L − \epsilon / 2 \) for all \( n \geq N \). Then use Exercise 5.4.8.

Proposition 6.1.15的内容:

(Formal limits are genuine limits). Suppose that \( (a_n)_{n = 1}^{\infty} \) is a Cauchy sequence of rational numbers. Then \( (a_n)_{n = 1}^{\infty} \) converges to \( \text{LIM}_{n \to \infty} a_n \), i.e. \( \text{LIM}_{n \to \infty} a_n = \lim\limits_{n \to \infty} a_n \).

证明:

记\( \text{LIM}_{n \to \infty} a_n \)为\( L \)。

假设\( (a_n)_{n = 1}^{\infty} \)不收敛到\( L \)(可能收敛到其他实数,或者直接不收敛),则\( \exists \epsilon_0 > 0 \),\( (a_n)_{n = 1}^{\infty} \)不最终\( \epsilon_0 \)-接近\( L \),即\( \exists \epsilon_0 > 0, \forall N \geq 1, \exists n \geq N, |a_n - L| > \epsilon_0 \),下面固定该\( \epsilon_0 \)。

因为\( (a_n)_{n = 1}^{\infty} \)为柯西序列,故\( \exists N_0 \geq 1, \forall j, k \geq N_0, |a_j - a_k| \leq \epsilon_0 / 2 \),针对该\( N_0 \),\( \exists n_0 \geq N_0, |a_{n_0} - L| > \epsilon_0 \),即\( a_{n_0} > L + \epsilon_0 \)或\( a_{n_0} < L - \epsilon_0 \):

  1. 如果\( a_{n_0} > L + \epsilon_0 \),则\( \forall n \geq N_0, |a_n - a_{n_0}| \leq \epsilon_0 / 2 \),有\( a_n > L + (\epsilon_0 / 2) \)。构造一个新序列\( (b_n)_{n = 1}^{\infty} \),如果\( n < N_0 \),则\( b_n = L + (\epsilon_0 / 2) \),如果\( n \geq N_0 \),则\( b_n = a_n \),易得\( (b_n)_{n = 1}^{\infty} \)和\( (a_n)_{n = 1}^{\infty} \)为等价柯西序列,且\( \forall n \geq 1, b_n \geq L + (\epsilon_0 / 2) \),根据练习5.4.8,有\( \text{LIM}_{n \to \infty} b_n = \text{LIM}_{n \to \infty} a_n = L \geq L + (\epsilon_0 / 2) \),即\( L \geq L + (\epsilon_0 / 2) \),矛盾。
  2. 如果\( a_{n_0} < L - \epsilon_0 \),则\( \forall n \geq N_0, |a_n - a_{n_0}| \leq \epsilon_0 / 2 \),有\( a_n < L - (\epsilon_0 / 2) \)。构造一个新序列\( (b_n)_{n = 1}^{\infty} \),如果\( n < N_0 \),则\( b_n = L - (\epsilon_0 / 2) \),如果\( n \geq N_0 \),则\( b_n = a_n \),易得\( (b_n)_{n = 1}^{\infty} \)和\( (a_n)_{n = 1}^{\infty} \)为等价柯西序列,且\( \forall n \geq 1, b_n \leq L - (\epsilon_0 / 2) \),根据练习5.4.8,有\( \text{LIM}_{n \to \infty} b_n = \text{LIM}_{n \to \infty} a_n = L \leq L - (\epsilon_0 / 2) \),即\( L \leq L - (\epsilon_0 / 2) \),矛盾。

至此可得\( a_{n_0} > L + \epsilon_0 \)和\( a_{n_0} < L - \epsilon_0 \) 都会产生矛盾,故假设不成立,有\( (a_n)_{n = 1}^{\infty} \)收敛到\( L \),即\( \lim\limits_{n \to \infty} a_n = \text{LIM}_{n \to \infty} a_n \)。

证毕。

练习6.1.7

题目:

Show that Definition 6.1.16 is consistent with Definition 5.1.12 (i.e., prove an analogue of Proposition 6.1.4 for bounded sequences instead of Cauchy sequences).

证明:

注:定义5.1.12中序列的下标从\( 1 \)开始,这里统一改成从\( m \)开始。

必要性:

如果\( (a_n)_{n = m}^{\infty} \)在定义6.1.16下的有界,即\( \exists M > 0 \in \mathbf{R}, \forall n \geq m, |a_n| \leq M \),根据定理5.4.12,\( \exists M' \in \mathbf{Z}, M' \geq M \),故\( \forall n \geq m, |a_n| \leq M \leq M' \),又\( M' \)为有理数,可得\( (a_n)_{n = m}^{\infty} \)在定义5.1.12下有界。

充分性:

如果\( (a_n)_{n = m}^{\infty} \)在定义5.1.12下的有界,即\( \exists M > 0 \in \mathbf{Q}, \forall n \geq m, |a_n| \leq M \),这里\( M \)既然是有理数了,当然也是实数,故\( (a_n)_{n = m}^{\infty} \)在定义6.1.16下有界。

证毕。

练习6.1.8

题目:

Prove Theorem 6.1.19. (Hint: you can use some parts of the theorem to prove others, e.g., 2 can be used to prove 3; 1, 3 can be used to prove 4; and 2, 5 can be used to prove 6. The proofs are similar to those of Lemma 5.3.6, Proposition 5.3.10, and Lemma 5.3.15. For 5, you may need to first prove the auxiliary result that any sequence whose elements are non-zero, and which converges to a non-zero limit, is bounded away from zero.)

Theorem 6.1.19的内容:

(Limit Laws). Let \( (a_n)_{n = m}^{\infty} \) and \( (b_n)_{n = m}^{\infty} \) be convergent sequences of real numbers, and let \( x, y \) be the real numbers \( x := \lim_{n \to \infty} a_n \) and \( y := \lim_{n \to \infty} b_n \).

  1. The sequence \( (a_n + b_n)_{n = m}^{\infty} \) converges to \( x + y \); in other words, \( \lim\limits_{n \to \infty} (a_n + b_n) = \lim\limits_{n \to \infty} a_n + \lim\limits_{n \to \infty} b_n \).
  2. The sequence \( (a_nb_n)_{n = m}^{\infty} \) converges to \( xy \); in other words, \( \lim\limits_{n \to \infty} (a_nb_n) = (\lim\limits_{n \to \infty} a_n) (\lim\limits_{n \to \infty} b_n) \).
  3. For any real number \( c \), the sequence \( (ca_n)_{n = m}^{\infty} \) converges to \( cx \); in other words, \( \lim\limits_{n \to \infty} (ca_n) = c \lim\limits_{n \to \infty} a_n \).
  4. The sequence \( (a_n - b_n)_{n = m}^{\infty} \) converges to \( x - y \); in other words, \( \lim\limits_{n \to \infty} (a_n - b_n) = \lim\limits_{n \to \infty} a_n - \lim\limits_{n \to \infty} b_n \).
  5. Suppose that \( y \neq 0 \), and that \( b_n \neq 0 \) for all \( n \geq m \). Then the sequence \( (b_n^{-1})_{n = m}^{\infty} \) converges to \( y^{-1} \); in other words, \( \lim\limits_{n \to \infty} (b_n^{-1}) = (\lim\limits_{n \to \infty} b_n)^{-1} \).
  6. Suppose that \( y \neq 0 \), and that \( b_n \neq 0 \) for all \( n \geq m \). Then the sequence \( (an / b_n)_{n = m}^{\infty} \) converges to \( x / y \); in other words, \( \lim\limits_{n \to \infty} \dfrac{a_n}{b_n} = \dfrac{\lim\limits_{n \to \infty} a_n}{\lim\limits_{n \to \infty} b_n} \).
  7. The sequence \( (\max(a_n, b_n))_{n = m}^{\infty} \) converges to \( \max(x, y) \); in other words, \( \lim\limits_{n \to \infty} \max(a_n, b_n) = \max(\lim\limits_{n \to \infty} a_n, \lim\limits_{n \to \infty} b_n) \).
  8. The sequence \( (\min(a_n, b_n))_{n = m}^{\infty} \) converges to \( \min(x, y) \); in other words, \( \lim\limits_{n \to \infty} \min(a_n, b_n) = \min(\lim\limits_{n \to \infty} a_n, \lim\limits_{n \to \infty} b_n) \).
  • 命题1

    证明:

    因为\( x := \lim_{n \to \infty} a_n \),故\( \forall \epsilon > 0, \exists N_0 \geq m, \forall n \geq N_0, |a_n - x| \leq \epsilon / 2 \)。因为\( y := \lim_{n \to \infty} b_n \),故\( \forall \epsilon > 0, \exists N_1 \geq m, \forall n \geq N_1, |b_n - y| \leq \epsilon / 2 \)。综上,\( \forall \epsilon > 0 \),取\( N = \max(N_0, N_1) \), 有\( \forall n \geq N, |(a_n + b_n) - (x + y)| = |(a_n - x) + (b_n - y)| \leq |a_n - x| + |b_n - y| \leq \epsilon \),即\( \lim\limits_{n \to \infty} (a_n + b_n) = \lim\limits_{n \to \infty} a_n + \lim\limits_{n \to \infty} b_n \)。

    证毕。

  • 命题2

    证明:

    令\( M = \max(|x|, |y|, 1) \)。因为\( x := \lim_{n \to \infty} a_n \),故\( \forall 0 < \epsilon < 1, \exists N_0 \geq m, \forall n \geq N_0 \),有\( x \)和\( a_n \)\( (\epsilon / (3M)) \)-接近。因为\( y := \lim_{n \to \infty} b_n \),故\( \forall 0 < \epsilon < 1, \exists N_1 \geq m, \forall n \geq N_1 \),有\( y \)和\( b_n \)\( (\epsilon / (3M)) \)-接近。综上,\( \forall 0 < \epsilon < 1 \),取\( N = \max(N_0, N_1) \), \( \forall n \geq N \),根据定理4.3.7的命题8,有\( xy \)和\( a_nb_n \)\( ((\epsilon / (3M))|x| + (\epsilon / (3M))|y| + (\epsilon^2 / (9M^2))) \)-接近,因为\( M \geq |x|, M \geq |y| \),故\( (\epsilon / (3M))|x| \leq (\epsilon / (3M))M, (\epsilon / (3M))|y| \leq (\epsilon / (3M))M \),因为\( 0 < \epsilon < 1, M \geq 1 \),故\( \epsilon^2 / (9M^2) \leq \epsilon / 3 \),综合可得\( (\epsilon / (3M))|x| + (\epsilon / (3M))|y| + (\epsilon^2 / (9M^2)) \leq (\epsilon / (3M))M + (\epsilon / (3M))M + \epsilon / 3 = \epsilon \),根据定理4.3.7的命题5,有\( xy \)和\( a_nb_n \) \( \epsilon \)-接近。简而言之,\( \forall 0 < \epsilon < 1, \exists N \geq m, \forall n \geq N, |a_nb_n - xy| \leq \epsilon \),到这里仅证明了\( \forall 0 < \epsilon < 1 \)的情况,针对\( \forall \epsilon \geq 1 \),则随便取一个\( 0 < \epsilon_0 < 1 \),可得\( \exists N \geq m, \forall n \geq N, |a_nb_n - xy| \leq \epsilon_0 \leq \epsilon \)。综上,\( \lim\limits_{n \to \infty} (a_nb_n) = (\lim\limits_{n \to \infty} a_n) (\lim\limits_{n \to \infty} b_n) \)。

    证毕。

  • 命题3

    证明:

    \( \lim\limits_{n \to \infty} c = c \),根据命题2,有\( \lim_{n \to \infty} (ca_n) = (\lim_{n \to \infty} c)(\lim_{n \to \infty} a_n) = cx \)。

    证毕。

  • 命题4

    证明:

    根据命题3,\( \lim_{n \to \infty} (-b_n) = -y \)。再根据命题2, \( \lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} (-b_n) = x - y \)。

    证毕。

  • 命题5

    证明:

    因为\( y \neq 0 \),故\( (b_n)_{n = m}^{\infty} \)不收敛于\( 0 \),即\( \exists \epsilon_0 > 0, \forall N \geq m, \exists n \geq N, |b_n - 0| = |b_n| > \epsilon_0 \),下面固定该\( \epsilon_0 \)。因为\( (b_n)_{n = m}^{\infty} \)收敛,故\( (b_n)_{n = m}^{\infty} \)为柯西序列,有\( \exists N_0 \geq m, \forall j, k \geq N_0, |b_j - b_k| \leq \epsilon_0 / 2 \),此时\( \exists n_0 \geq N_0, |b_{n_0}| > \epsilon_0 \),又\( \forall n \geq N_0, |b_n - b_{n_0}| \leq \epsilon_0 / 2 \),可得\( \forall n \geq N_0, |b_n| \geq \epsilon_0 / 2 \)。综上,\( \exists c > 0, N_0 \geq m, \forall n \geq N_0, |b_n| \geq c \) (也就说\( (b_n)_{n = m}^{\infty} \)最终远离0),此时有\( |b_ny| = |b_n||y| \geq c|y| \),下面固定该\( c \)以及\( N_0 \)。

    因为\( (b_n)_{n = m}^{\infty} \)收敛于\( y \),故 \( \forall \epsilon > 0, \exists N_1 \geq m, \forall n \geq N_1, |b_n - y| \leq \epsilon c |y| \) (注:\( \epsilon c |y| > 0 \)),下面固定\( N_1 \)。

    \( \forall \epsilon > 0 \),取\( N = \max(N_0, N_1) \), \( \forall n \geq N, |b_n^{-1} - y^{-1}| = |\dfrac{y - b_n}{b_ny}| \leq \dfrac{\epsilon c |y|}{c|y|} = \epsilon \),即\( \lim\limits_{n \to \infty} (b_n^{-1}) = (\lim\limits_{n \to \infty} b_n)^{-1} \)。

    证毕。

  • 命题6

    证明:

    根据命题5,\( \lim\limits_{n \to \infty} \dfrac{1}{b_n} = \dfrac{1}{y} \),再根据命题2,有\( \lim\limits_{n \to \infty} \dfrac{a_n}{b_n} = (\lim\limits_{n \to \infty} a_n) (\lim\limits_{n \to \infty} \dfrac{1}{b_n}) = \dfrac{x}{y} = \dfrac{\lim\limits_{n \to \infty} a_n}{\lim\limits_{n \to \infty} b_n} \)。

    证毕。

  • 命题7

    证明:

    因为\( x := \lim_{n \to \infty} a_n \),故\( \forall \epsilon > 0, \exists N_0 \geq m, \forall n \geq N_0, |a_n - x| \leq \epsilon \)。因为\( y := \lim_{n \to \infty} b_n \),故\( \forall \epsilon > 0, \exists N_1 \geq m, \forall n \geq N_1, |b_n - y| \leq \epsilon \)。 \( \forall \epsilon > 0 \),取\( N = \max(N_0, N_1) \), \( \forall n \geq N \),有\( |a_n - x| \leq \epsilon \)和\( |b_n - y| \leq \epsilon \)同时成立,即\( x - \epsilon \leq a_n \leq x + \epsilon \)以及\( y - \epsilon \leq a_n \leq y + \epsilon \)同时成立。

    如果\( x \geq y \),则\( \max(x, y) = x \),此时我们需要证明\( \lim\limits_{n \to \infty} \max(a_n, b_n) = x \)。因为\( x \geq y \),故\( x + \epsilon \geq y + \epsilon \),可得\( b_n \leq y + \epsilon \leq x + \epsilon \),因为\( a_n \)和\( b_n \)都\( \leq x + \epsilon \),可得\( \max(a_n, b_n) \leq x + \epsilon \),又\( \max(a_n, b_n) \geq a_n \),可得\( \max(a_n, b_n) \geq x - \epsilon \),综合可得\( x - \epsilon \leq \max(a_n, b_n) \leq x + \epsilon \),即\( |\max(a_n, b_n) - x| \leq \epsilon \)。至此,可得\( \lim\limits_{n \to \infty} \max(a_n, b_n) = x \)。

    如果\( x < y \),则\( \max(x, y) = y \),此时我们需要证明\( \lim\limits_{n \to \infty} \max(a_n, b_n) = y \)。因为\( x < y \),故\( x + \epsilon < y + \epsilon \),可得\( a_n \leq x + \epsilon < y + \epsilon \),因为\( a_n \)和\( b_n \)都\( \leq y + \epsilon \),可得\( \max(a_n, b_n) \leq y + \epsilon \),又\( \max(a_n, b_n) \geq b_n \),可得\( \max(a_n, b_n) \geq y - \epsilon \),综合可得\( y - \epsilon \leq \max(a_n, b_n) \leq y + \epsilon \),即\( |\max(a_n, b_n) - y| \leq \epsilon \)。至此,可得\( \lim\limits_{n \to \infty} \max(a_n, b_n) = y \)。

    证毕。

  • 命题8

    证明:

    易证\( \forall x, y \in \mathbf{R}, \min(x, y) = -\max(-x, -y) \)(分类讨论下就行)。

    根据命题3,有\( \lim\limits_{n \to \infty} (-a_n) = - \lim\limits_{n \to \infty} (a_n) = -x , \lim\limits_{n \to \infty} (-b_n) = - \lim\limits_{n \to \infty} (b_n) = -y \)。

    根据命题7和命题3,有\( \lim\limits_{n \to \infty} \min(a_n, b_n) = \lim\limits_{n \to \infty} -\max(-a_n, -b_n) = -\max(\lim\limits_{n \to \infty} -a_n, \lim\limits_{n \to \infty} -b_n) = -\max(-x, -y) = \min(x, y) \)。

    证毕。

练习6.1.9

题目:

Explain why Theorem 6.1.19(6) fails when the limit of the denominator is 0. (To repair that problem requires L’Hôpital’s rule, see Section 10.5.)

解答:

如果\( \lim\limits_{n \to \infty} b_n = 0 \),则 \( \dfrac{\lim\limits_{n \to \infty} a_n}{\lim\limits_{n \to \infty} b_n} = \dfrac{\lim\limits_{n \to \infty} a_n}{0} \),即除数为0,然而这是未定义的, \( \dfrac{\lim\limits_{n \to \infty} a_n}{0} \)不是一个实数。

练习6.1.10

题目:

Show that the concept of equivalent Cauchy sequence, as defined in Definition 5.2.6, does not change if \( \epsilon \) is required to be positive real instead of positive rational. More precisely, if \( (a_n)_{n = 0}^{\infty} \) and \( (b_n)_{n = 0}^{\infty} \) are sequences of reals, show that \( (a_n)_{n = 0}^{\infty} \) and \( (b_n)_{n = 0}^{\infty} \) are eventually \( \epsilon \)-close for every rational \( \epsilon > 0 \) if and only if they are eventually \( \epsilon \)-close for every real \( \epsilon > 0 \). (Hint: modify the proof of Proposition 6.1.4.)

证明:

必要性:

如果\( \forall \epsilon > 0 \in \mathbf{Q}, \exists N \geq 0, \forall n \geq N \),有\( |a_n - b_n| \leq \epsilon \),则\( \forall \epsilon > 0 \in \mathbf{R} \),根据定理5.4.12, \( \exists 0 < q < \epsilon, q \in \mathbf{Q} \),从而\( \exists N \geq 0, \forall n \geq N, |a_n - b_n| \leq q < \epsilon \)。

充分性:

如果\( \forall \epsilon > 0 \in \mathbf{R}, \exists N \geq 0, \forall n \geq N, |a_n - b_n| \leq \epsilon \),则\( \forall \epsilon > 0 \in \mathbf{Q} \),因为\( \epsilon \)也是实数,故\( \exists N \geq 0, \forall n \geq N, |a_n - b_n| \leq \epsilon \)。

证毕。

章节6.2

练习6.2.1

题目:

Prove Proposition 6.2.5. (Hint: you may need Proposition 5.4.7.)

Proposition 6.2.5的内容:

Let \( x, y, z \) be extended real numbers. Then the following statements are true:

  1. (Reflexivity) We have \( x \leq x \).
  2. (Trichotomy) Exactly one of the statements \( x < y \), \( x = y \), or \( x > y \) is true.
  3. (Transitivity) If \( x \leq y \) and \( y \leq z \), then \( x \leq z \).
  • 命题1

    证明:

    如果\( x \in \mathbf{R} \),则\( x \leq x \)。如果\( x \notin \mathbf{R} \),则\( x = + \infty \)或\( x = - \infty \),如果\( x = + \infty \),则根据定义6.2.3(b),有\( x \leq x \),如果\( x = - \infty \),则根据定义6.2.3(c),有\( x \leq x \)。

    证毕。

  • 命题2

    证明:

    如果\( x \in \mathbf{R}, y \in \mathbf{R} \),则\( x < y \),\( x = y \),\( x > y \)三者中有且仅有一个成立。

    如果\( x \)和\( y \)中有且仅有一个\( \in \mathbf{R} \),不妨设\( y \in \mathbf{R}, x \notin \mathbf{R} \),有\( x = + \infty \)或\( x = - \infty \)。如果\( x = + \infty \),则根据定义6.2.3(b),有\( y \leq x \),又因为\( y \in \mathbf{R} \),故\( y \neq + \infty = x \),从而有\( y < x \),即\( x > y \),又根据定义6.2.3,有\( x \leq y \)不成立(三个条件都不满足),综合可得仅有\( x > y \)成立。如果\( x = - \infty \),则根据定义6.2.3(b),有\( x \leq y \),又因为\( y \in \mathbf{R} \),故\( y \neq - \infty \),从而有\( x < y \),又根据定义6.2.3,有\( y \leq x \)不成立(三个条件都不满足),综合可得仅有\( x < y \)成立。综上,如果\( y \in \mathbf{R}, x \notin \mathbf{R} \),则三者中有且仅有一个成立,要么是\( x < y \)成立,要么是\( x > y \)成立, \( x = y \)是不可能的,因为一个是实数,一个是费实数。如果反之,\( x \in \mathbf{R}, y \notin \mathbf{R} \),则交换下符号即可。

    综上,\( x < y \),\( x = y \),\( x > y \)三者中有且仅有一个成立。

    证毕。

  • 命题3

    证明:

    以下都在如果\( x \leq y, y \leq z \)的条件下讨论:

    如果\( x, y, z \)均是实数,则有\( x \leq z \)。

    如果\( y \)不是实数,则\( y = + \infty \)或\( y = - \infty \):

    1. 如果\( y = + \infty \),则因为\( y \leq z \),根据定义6.2.3,可得\( z = + \infty \),再次根据定义6.2.3,可得\( x \leq + \infty = z \)。
    2. 如果\( y = - \infty \),则因为\( x \leq y \),根据定义6.2.3,可得\( x = - \infty \),再次根据定义6.2.3,可得\( x = - \infty \leq z \)。

    如果\( z \)不是实数,则\( z = + \infty \)或\( z = - \infty \):

    1. 如果\( z = + \infty \),则根据定义6.2.3,有\( x \leq + \infty = z \)。
    2. 如果\( z = - \infty \),则因为\( y \leq z \),根据定义6.2.3,可得\( y = - \infty \),又因为\( x \leq y \),再次根据定义6.2.3,可得\( x = - \infty \leq z \)。

    综上,如果\( x \leq y, y \leq z \),可得\( x \leq z \)。

    证毕。

练习6.2.2

题目:

Prove Theorem 6.2.11. (Hint: you may need to break into cases depending on whether \( + \infty \) or \( −\infty \) belongs to \( E \). You can of course use Definition 5.5.10, provided that \( E \) consists only of real numbers.)

Theorem 6.2.11的内容:

Let \( E \) be a subset of \( \mathbf{R}^{*} \). Then the following statements are true.

  1. For every \( x \in E \) we have \( x \leq \text{sup}(E) \) and \( x \geq \text{inf}(E) \).
  2. Suppose that \( M \in \mathbf{R}^{*} \) is an upper bound for \( E \), i.e., \( x \leq M \) for all \( x \in E \). Then we have \( \text{sup}(E) \leq M \).
  3. Suppose that \( M \in \mathbf{R}^{*} \) is a lower bound for \( E \), i.e., \( x \geq M \) for all \( x \in E \). Then we have \( \text{inf}(E) \geq M \).
  • 命题1

    证明:

    先讨论上确界的情况:

    如果\( + \infty \in E \),根据定义6.2.6,有\( \text{sup}(E) = + \infty \),此时\( \forall x \in E \),根据定义6.2.3,有\( x \leq + \infty = \text{sup}(E) \)。

    如果\( + \infty \notin E \),根据定义6.2.6,有\( \text{sup}(E) = \text{sup}(E \setminus \{ - \infty \}) \) (注:这里不管\( E \)包不包含\( - \infty \)都没问题,因为如果\( E \)不包含 \( - \infty \),则\( E \setminus \{ - \infty \} = E \))。特别的,有\( E \setminus \{ - \infty \} \)不包含\( + \infty \)以及\( - \infty \),即\( \forall x \in E \),有\( x \in \mathbf{R} \),此时:

    1. 如果\( E \setminus \{ - \infty \} \)非空,则根据定义5.5.10,有\( \text{sup}(E \setminus \{ - \infty \}) \)存在,且 \( \forall x \in (E \setminus \{ - \infty \}) \),有\( x \leq \text{sup}(E \setminus \{ - \infty \}) = \text{sup}(E) \),此时:
      1. 如果集合\( E \)不包含\( - \infty \),则\( E = E \setminus \{ - \infty \} \),从而有\( \forall x \in E, x \leq \text{sup}(E) \)。
      2. 如果集合\( E \)包含\( - \infty \),则\( E = (E \setminus \{ - \infty \}) \cup \{ - \infty \} \),也就是前者仅多了一个\( - \infty \),又\( \forall x \in \mathbf{R}^{*}, - \infty \leq x \),可得\( \forall x \in E, x \leq \text{sup}(E) \)。
    2. 如果\( E \setminus \{ - \infty \} \)为空,则\( \text{sup}(E \setminus \{ - \infty \}) = - \infty = \text{sup}(E) \),此时\( \forall x \in E, x \leq - \infty = \text{sup}(E) \)。

    再讨论下确界的情况:

    如果\( - \infty \in E \),则\( + \infty \in -E \),根据定义6.2.6,有\( \text{inf}(E) = -\text{sup}(-E) = -(+ \infty) = - \infty \),此时\( \forall x \in E \),根据定义6.2.3,有\( x \geq - \infty = \text{sup}(inf) \)。

    如果\( - \infty \notin E \),则\( + \infty \notin -E \),根据定义6.2.6,有\( \text{inf}(E) = -\text{sup}(-E) = -\text{sup}(-E \setminus \{ - \infty \}) \) (注:这里不管\( -E \)包不包含\( - \infty \)都没问题,因为如果\( -E \)不包含 \( - \infty \),则\( -E \setminus \{ - \infty \} = -E \))。特别的,有\( -E \setminus \{ - \infty \} \)不包含\( + \infty \)以及\( - \infty \),即\( \forall x \in -E \),有\( x \in \mathbf{R} \),此时:

    1. 如果\( -E \setminus \{ - \infty \} \)非空,则根据定义5.5.10,有\( \text{sup}(-E \setminus \{ - \infty \}) \)为存在的实数,且 \( \forall x \in (-E \setminus \{ - \infty \}) \),有\( x \leq \text{sup}(-E \setminus \{ - \infty \}) = \text{sup}(-E) \),此时:
      1. 如果集合\( -E \)不包含\( - \infty \),则\( -E = -E \setminus \{ - \infty \} \),从而有\( \forall x \in -E, x \leq \text{sup}(-E) \),进而有\( -x \in E \)且\( -x \geq -\text{sup}(-E) = \text{inf}(E) \)。
      2. 如果集合\( -E \)包含\( - \infty \),则\( -E = (-E \setminus \{ - \infty \}) \cup \{ - \infty \} \),也就是前者仅多了一个\( - \infty \),又\( \forall x \in \mathbf{R}^{*}, - \infty \leq x \),可得\( \forall x \in -E, x \leq \text{sup}(-E) \),进而有\( -x \in E \)且\( -x \geq -\text{sup}(-E) = \text{inf}(E) \)。
    2. 如果\( -E \setminus \{ - \infty \} \)为空,则\( \text{sup}(-E \setminus \{ - \infty \}) = - \infty = \text{sup}(-E) \),此时\( \forall x \in -E, x \leq - \infty = \text{sup}(-E) \),进而有\( -x \in E \)且\( -x \geq -\text{sup}(-E) = \text{inf}(E) \)。

    证毕。

  • 命题2

    证明:

    如果\( \text{sup}(E) \)为实数,则可得该上确界是通过定义6.2.6的情况(a)得到的(或者情况(c),但是情况(c)会被转换成情况(a)),即\( \text{sup}(E) \)满足定义5.5.10,此时可得\( \forall M \in \mathbf{R} \)为\( E \)的上界,有\( \text{sup}(E) \leq M \)。针对\( \forall M \in \mathbf{R}^{*} \),但\( M \notin \mathbf{R} \)的上界,有\( M = + \infty \) (因为随便在集合中取个元素\( x \),都有\( x \geq - \infty \),即\( - \infty \)不是上界),此时\( \text{sup}(E) \leq + \infty = M \)。

    如果\( \text{sup}(E) \)不为实数,则可得该上界是通过定义6.2.6的情况(b)得到的,即\( + \infty \in E \)且\( \text{sup}(E) = + \infty \),此时\( \forall M \)为\( E \)的上界,有\( \forall x \in E, M \geq x \),特别的有 \( M \geq + \infty = \text{sup}(E) \)。

    证毕。

  • 命题3

    证明:

    如果\( \text{inf}(E) = -\text{sup}(-E) \)为实数,则可得\( \text{sup}(-E) \)是通过定义 6.2.6的情况(a)得到的(或者情况(c),但是情况(c)会被转换成情况(a)),即\( \text{sup}(-E) \)满足定义5.5.10,此时可得\( \forall M \in \mathbf{R} \)为\( E \)的下界,有 \( -M \)为\( -E \)的上界(之前证过)且\( \text{sup}(-E) \leq -M \),进而有\( \text{inf}(E) = -\text{sup}(-E) \geq M \)。针对\( \forall M \in \mathbf{R}^{*} \),但\( M \notin \mathbf{R} \)的下界,有\( M = - \infty \),此时\( \text{sup}(E) \geq - \infty = M \)。

    如果\( \text{sup}(E) = -\text{sup}(-E) \)不为实数,则可得\( \text{sup}(-E) \)是通过定义 6.2.6的情况(b)得到的,即\( + \infty \in -E \)且\( \text{sup}(-E) = + \infty \),此时\( \forall M \)为\( E \)的上界,有\( -M \)为\( -E \)的上界且\( \forall x \in -E, -M \geq x \),特别的有\( -M \geq + \infty = \text{sup}(-E) \),进而有\( M \leq - \infty = -\text{sup}(-E) = \text{inf}(E) \)。

    证毕。

章节6.3

练习6.3.1

题目:

Verify the claim in Example 6.3.4.

Example 6.3.4的内容:

Let \( a_n := 1 / n \); thus \( (a_n)_{n = 1}^{\infty} \) is the sequence \( 1, 1 / 2, 1 / 3, \dots \) Then the set \( \{ a_n : n \geq 1 \} \) is the countable set \( {1, 1 / 2, 1 / 3, 1 / 4, \dots } \). Thus \( \sup(a_n)_{n = 1}^{\infty} = 1 \) and \( \inf(a_n)_{n = 1}^{\infty} = 0 \) (Exercise 6.3.1). Notice here that the infimum of the sequence is not actually a member of the sequence, though it becomes very close to the sequence eventually. (So it is a little inaccurate to think of the supremum and infimum as the “largest element of the sequence” and “smallest element of the sequence” respectively.)

证明\( \sup(a_n)_{n = 1}^{\infty} = 1 \):

根据定义6.3.1,\( \sup(a_n)_{n = 1}^{\infty} = \sup(\{ a_n : n \geq 1 \}) \), \( \forall n \geq 1, a_n = 1 / n \leq 1 \),可得\( 1 \)为\( \{ a_n : n \geq 1 \} \)的上界。假设\( 1 \)是上界,但不是上确界,即\( \exists M < 1, \forall n \geq 1, a_n \leq M \),而\( 1 \in \{ a_n : n \geq 1 \} \),但却\( 1 > M \),这和\( M \)为\( \{ a_n : n \geq 1 \} \)的上界矛盾,故假设不成立,有\( 1 \)是\( \{ a_n : n \geq 1 \} \)的上确界。

证毕。

证明\( \inf(a_n)_{n = 1}^{\infty} = 0 \):

根据定义6.3.1,\( \inf(a_n)_{n = 1}^{\infty} = \inf(\{ a_n : n \geq 1 \}) \), \( \forall n \geq 1, a_n = 1 / n \geq 0 \),可得\( 0 \)为\( \{ a_n : n \geq 1 \} \)的下界。假设\( 0 \)是下界,但不是下确界,即\( \exists M > 0, \forall n \geq 1, M \leq a_n \),根据练习5.4.4,\( \exists N > 0 \in \mathbf{Z}, 1 / N < M \),而\( 1 / N \in \{ a_n : n \geq 1 \} \),但却\( 1 / N < M \),这和\( M \)为\( \{ a_n : n \geq 1 \} \)的下界矛盾,故假设不成立,有\( 0 \)是\( \{ a_n : n \geq 1 \} \)的下确界。

证毕。

练习6.3.2

题目:

Prove Proposition 6.3.6. (Hint: use Theorem 6.2.11.)

Proposition 6.3.6的内容:

(Least upper bound property). Let \( (a_n)_{n = m}^{\infty} \) be a sequence of real numbers, and let \( x \) be the extended real number \( x := \sup(a_n)_{n = m}^{\infty} \). Then we have \( a_n \leq x \) for all \( n \geq m \). Also, whenever \( M \in \mathbf{R}^{*} \) is an upper bound for \( (a_n)_{n = m}^{\infty} \) (i.e., \( a_n \leq M \) for all \( n \geq m \)), we have \( x \leq M \). Finally, for every extended real number \( y \) for which \( y < x \), there exists at least one \( n \geq m \) for which \( y < a_n \leq x \).

证明:

因为\( x = \sup(a_n)_{n = m}^{\infty} \),故\( x = \sup(\{ a_n : n \geq m \}) \),根据定理6.2.11,有\( \forall z \in \{ a_n : n \geq m \}, z \leq x \),而\( \forall n \geq m \),有\( a_n \in \{ a_n : n \geq m \} \),可得\( a_n \leq x \)。

\( \forall M \in \mathbf{R}^{*} \),\( M \)为\( (a_n)_{n = m}^{\infty} \)的上界,有\( \forall n \geq m, a_n \leq M \),此时\( \forall x \in \{ a_n : n \geq m \} \),有\( \exists n \geq m, x = a_n \leq M \),即\( M \)为\( \{ a_n : n \geq m \} \) 的上界,根据定理6.2.11,有\( x = \sup(\{ a_n : n \geq m \}) \leq M \)。

\( \forall y \in \mathbf{R}^{*}, y < x \),假设\( \forall n \geq m \),均有\( a_n \leq y \),可得\( y \)为\( (a_n)_{n = m}^{\infty} \)的上界且\( y < x \),但这和\( x = \sup(\{ a_n : n \geq m \}) \)矛盾,故假设不成立,有\( \exists n \geq m, y < a_n \leq x \)。

证毕。

练习6.3.3

题目:

Prove Proposition 6.3.8. (Hint: use Proposition 6.3.6, together with the assumption that \( a_n \) is increasing, to show that \( a_n \) converges to \( \sup(a_n)_{n=m}^{\infty} \) .)

Proposition 6.3.8的内容:

(Monotone bounded sequences converge). Let \( (a_n)_{n = m}^{\infty} \) be a sequence of real numbers which has some finite upper bound \( M \in \mathbf{R} \), and which is also increasing (i.e., \( a_{n + 1} \geq a_n \) for all \( n \geq m \)). Then \( (a_n)_{n = m}^{\infty} \) is convergent, and in fact \( \lim\limits_{n \to \infty} a_n = \sup(a_n)_{n = m}^{\infty} \leq M \).

证明:

\( M \in \mathbf{R} \)为\( (a_n)_{n = m}^{\infty} \)的上界,即\( M \)为\( \{ a_n : n \geq m \} \)的上界,又\( \{ a_n : n \geq m \} \)非空,根据定理5.5.9,有\( \sup(\{ a_n : n \geq m \}) \)存在且为实数,而根据定义6.3.1,\( \sup(a_n)_{n = m}^{\infty} = \sup(\{ a_n : n \geq m \}) \)。下面记\( x = \sup(a_n)_{n = m}^{\infty} \)。 \( \forall \epsilon > 0 \),有\( x - \epsilon < x \),根据定理6.3.6,有\( \exists n_0 \geq m, x - \epsilon < a_{n_0} \leq x \),又\( \forall n \geq m, a_{n + 1} \geq a_n \),易得\( \forall n \geq n_0 \geq m, x - \epsilon < a_{n_0} \leq a_n \leq x < x + \epsilon \),即\( |a_n - x| \leq \epsilon \)。综上,有\( \lim\limits_{n \to \infty} a_n = x = \sup(a_n)_{n = m}^{\infty} \leq M \)。

证毕。

练习6.3.4

题目:

Explain why Proposition 6.3.10 fails when \( x > 1 \). In fact, show that the sequence \( (x^n)_{n = 1}^{\infty} \) diverges when \( x > 1 \). (Hint: prove by contradiction and use the identity \( (1 / x)^nx^n = 1 \) and the limit laws in Theorem 6.1.19.) Compare this with the argument in Example 1.2.3; can you now explain the flaws in the reasoning in that example?

Proposition 6.3.10的内容:

Let \( 0 < x < 1 \). Then we have \( \lim_{n \to \infty} x^n = 0 \).

证明:

如果\( x > 1 \),则\( 0 < 1 / x < 1 \),根据定理6.1.10,有\( \lim_{n \to \infty} (1 / x)^n = 0 \),此时假设\( \lim_{n \to \infty} x^n \)收敛,记\( L = \lim_{n \to \infty} x^n \),则根据定理6.1.19,有\( \lim_{n \to \infty} (1 / x)^nx^n = (1 / x^n)x^n = 1 = \lim_{n \to \infty} (1 / x)^n \lim_{n \to \infty} x^n = 0 \),即得到\( 1 = 0 \),矛盾,故假设不成立,有\( \lim_{n \to \infty} x^n \)不收敛。

证毕。

例子1.2.3的问题在于:并不是针对所有范围的\( x \),序列\( (x^n)_{n = m}^{\infty} \)都收敛,然而例子1.2.3中对\( x \)的范围并没有限制,此时序列可能根本不收敛,对应的极限\( L \)也就不存在了。

章节6.4

练习6.4.1

题目:

Prove Proposition 6.4.5.

Proposition 6.4.5的内容:

(Limits are limit points). Let \( (a_n)_{n = m}^{\infty} \) be a sequence which converges to a real number \( c \). Then \( c \) is a limit point of \( (a_n)_{n = m}^{\infty} \), and in fact it is the only limit point of \( (a_n)_{n = m}^{\infty} \).

证明:

因为\( (a_n)_{n = m}^{\infty} \)收敛到\( c \),可得\( \forall \epsilon > 0, \exists N_0 \geq m, \forall n \geq N_0, |a_n - c| \leq \epsilon \),特别的,有\( \forall N \geq m \),如果\( N \geq N_0 \),则\( |a_N - c| \leq \epsilon \),如果\( N < N_0 \),则\( |a_{N_0} - c| \leq \epsilon \)。简而言之,\( \forall \epsilon > 0, \forall N \geq m, \exists n \geq N, |a_n - c| \leq \epsilon \),也就说\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点。

假设\( (a_n)_{n = m}^{\infty} \)有另外一个极限点\( c' \)且\( c' \neq c \),则令\( d = |c - c'| / 3 \),可得\( \exists N_0 \geq m, \forall n \geq N_0, |a_n - c| \leq d \),针对该\( N_0 \),有\( \forall n \geq N_0, |a_n - c'| > d \),即\( c' \)没有持续\( d \)-附着于\( (a_n)_{n = m}^{\infty} \),这和\( c' \)为\( (a_n)_{n = m}^{\infty} \)的极限点矛盾,故假设不成立,有\( (a_n)_{n = m}^{\infty} \)有且仅有一个极限点\( c \)。

证毕。

练习6.4.2

题目:

State and prove analogues of Exercises 6.1.3 and 6.1.4 for limit points, limit superior, and limit inferior.

Exercises 6.1.3 and 6.1.4在前面,这里就不复制到这里了。

  • 练习6.1.3的极限点版本

    令\( (a_n)_{n = m}^{\infty} \)为一个实数序列,令\( c \)为一个实数,令\( m' \geq m \)为一个整数。证明\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点当且仅当\( c \)为\( (a_n)_{n = m'}^{\infty} \)的极限点。

    证明:

    必要性:

    如果\( c \)是\( (a_n)_{n = m}^{\infty} \)的极限点,则\( \forall \epsilon > 0, \forall N \geq m, \exists n \geq N, |a_n - c| \leq \epsilon \),故\( \forall \epsilon > 0, \forall N \geq m' \geq m, \exists n \geq N, |a_n - c| \leq \epsilon \) ,即\( c \)为\( (a_n)_{n = m'}^{\infty} \)的极限点。

    充分性:

    如果\( c \)为\( (a_n)_{n = m'}^{\infty} \)的极限点,则\( \forall \epsilon > 0, \forall N \geq m', \exists n \geq N, |a_n - c| \leq \epsilon \)。 \( \forall \epsilon > 0, \forall N \geq m \),如果\( N \geq m' \),则有\( \exists n \geq N, |a_n - c| \leq \epsilon \),如果\( N < m' \),则取\( N_0 = m' > N \),\( \exists n \geq N_0 > N, |a_n - c| \leq \epsilon \)。综上可得,\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点。

    证毕。

  • 练习6.1.4的极限点版本

    令\( (a_n)_{n = m}^{\infty} \)为一个实数序列,令\( c \)为一个实数,令\( k \geq 0 \)为一个非负整数。证明\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点当且仅当\( c \)为\( (a_{n + k})_{n = m}^{\infty} \)的极限点。

    证明:

    必要性:

    如果\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点,则\( \forall \epsilon > 0, \forall N \geq m, \exists n \geq N, |a_n - c| \leq \epsilon \),故\( \forall \epsilon > 0, \forall N \geq m \),有\( N + k \geq m \),从而\( \exists n \geq N + k, |a_n - c| \leq \epsilon \),令\( n_0 = n - k \),可得\( n_0 \geq N \),且\( |a_{n_0 + k} - c| = |a_{(n - k) + k} - c| = |a_n - c| \leq \epsilon \),即\( c \)为\( (a_{n + k})_{n = m}^{\infty} \)的极限点。

    充分性:

    如果\( c \)为\( (a_{n + k})_{n = m}^{\infty} \)的极限点,则\( \forall \epsilon > 0, \forall N \geq m, \exists n \geq N, |a_{n + k} - c| \leq \epsilon \)。 \( \forall \epsilon > 0, \forall N \geq m \),如果\( N - k \geq m \),则\( \exists n \geq N - k, |a_{n + k} - c| \leq \epsilon \),此时令\( n_0 = n + k \),可得\( n_0 \geq N, |a_{n_0} - c| = |a_{n + k} - c| \leq \epsilon \),如果\( N - k < m \),则取\( N_0 = m + k \),此时\( N_0 - k \geq m \),且\( \exists n \geq N_0 - k, |a_{n + k} - c| \leq \epsilon \),此时令\( n_0 = n + k \),可得\( n_0 \geq N_0 \geq N, |a_{n_0} - c| = |a_{n + k} - c| \leq \epsilon \)。综上可得,\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点。

    证毕。

  • 练习6.1.3的上极限版本

    令\( (a_n)_{n = m}^{\infty} \)为一个实数序列,令\( c \)为一个 拓展实数 ,令\( m' \geq m \)为一个整数。证明\( c \)为\( (a_n)_{n = m}^{\infty} \)的上极限当且仅当\( c \)为\( (a_n)_{n = m'}^{\infty} \)的上极限。

    证明:

    必要性:

    如果\( c \)为\( (a_n)_{n = m}^{\infty} \)的上极限,则\( c = \inf(a_N^+)_{N = m}^{\infty} \),即\( c \)为\( \{ a_N^+ : N \geq m \} \)的下确界,记\( \{ a_N^+ : N \geq m \} \)为\( A \),可得\( \forall x \in A, c \leq x \),且\( \forall M \)为\( A \)的下界,有\( c \geq M \)。记\( \{ a_N^+ : N \geq m' \} \)为\( B \)。 \( \forall x \in B \),有\( x \in A \),进而有\( c \leq x \),即\( c \)为\( B \)的下界,下面继续证明它是下确界。假设\( c \)不是\( B \)的下确界,即\( \exists M_0 \)为\( B \)的下界且\( M_0 > c \),根据定理6.3.6(拓展到下确界的版本),\( \exists N_0 \geq m, a_{N_0}^+ < M_0 \),如果\( N_0 \geq m' \),则\( a_{N_0}^+ < M_0 \)和\( M_0 \)为\( B \)的下界矛盾,如果\( N_0 < m' \),则有\( a_{m'}^+ \leq a_{N_0}^+ \),又\( a_{N_0}^+ < M_0 \),可得\( a_{m'}^+ < M_0 \),这和\( M_0 \)为\( B \)的下界矛盾。不管什么情况,都会推出矛盾,故假设不成立,有\( c \)是\( B \)的下确界。

    充分性:

    如果\( c \)为\( (a_n)_{n = m'}^{\infty} \)的上极限,则\( c = \inf(a_N^+)_{N = m'}^{\infty} \),即\( c \)为\( \{ a_N^+ : N \geq m' \} \)的下确界,记\( \{ a_N^+ : N \geq m' \} \)为\( A \),可得\( \forall x \in A, c \leq x \),且\( \forall M \)为\( A \)的下界,有\( c \geq M \)。记\( \{ a_N^+ : N \geq m \} \)为\( B \)。 \( \forall x \in B \),如果\( x \in A \),则\( c \leq x \),如果\( x \notin A \),则\( \exists m \leq m_0 < m', a_{m_0}^+ = x \),此时有\( a_{m'}^+ \leq a_{m_0}^+ \),又\( c \leq a_{m'}^+ \),可得\( c \leq a_{m_0}^+ = x \),综上,可得\( c \)为\( B \)的下界,下面继续证明它是下确界。 \( \forall M \)为\( B \)的下界,有\( M \)为\( A \)的下界,进而有\( c \geq M \),即\( c \)为\( B \)的下确界。

    证毕。

  • 练习6.1.4的上极限版本

    令\( (a_n)_{n = m}^{\infty} \)为一个实数序列,令\( c \)为一个 拓展实数 ,令\( k \geq 0 \)为一个非负整数。证明\( c \)为\( (a_n)_{n = m}^{\infty} \)的上极限当且仅当\( c \)为\( (a_{n + k})_{n = m}^{\infty} \)的上极限。

    证明:

    必要性:

    如果\( c \)为\( (a_n)_{n = m}^{\infty} \)的上极限,则\( c = \inf(a_N^+)_{N = m}^{\infty} \),即\( c \)为\( \{ a_N^+ : N \geq m \} \)的下确界,记\( \{ a_N^+ : N \geq m \} \)为\( A \),可得\( \forall x \in A, c \leq x \),且\( \forall M \)为\( A \)的下界,有\( c \geq M \)。记\( \{ a_{N + k}^+ : N \geq m \} \)为\( B \)。 \( \forall x \in B \),有\( x \in A \),进而有\( c \leq x \),即\( c \)为\( B \)的下界,下面继续证明它是下确界。 \( \forall M \)为\( B \)的下界,假设\( M \)不为\( A \)的下界,则\( \exists m \leq m_0 < m + k, a_{m_0}^+ < M \),而\( a_{m + k}^+ \leq a_{m_0}^+ \),可得\( a_{m + k}^+ < M \),然而\( a_{m + k}^+ \in B \),这和\( M \)为\( B \)的下界矛盾,故假设不成立,有\( M \)为\( A \)的下界,进而有\( c \geq M \),即\( c \)为\( B \)的下确界。

    充分性:

    如果\( c \)为\( (a_{n + k})_{n = m}^{\infty} \)的上极限,则\( c = \inf(a_{N + k}^+)_{N = m}^{\infty} \),即\( c \)为\( \{ a_{N + k}^+ : N \geq m \} \)的下确界,记\( \{ a_{N + k}^+ : N \geq m \} \)为\( A \),可得\( \forall x \in A, c \leq x \),且\( \forall M \)为\( A \)的下界,有\( c \geq M \)。记\( \{ a_N^+ : N \geq m \} \)为\( B \)。 \( \forall x \in B \),如果\( x \in A \),则\( c \leq x \),如果\( x \notin A \),则\( \exists m \leq m_0 < m + k, a_{m_0}^+ = x \),然而\( a_{m + k}^+ \leq a_{m_0}^+ \),又\( c \leq a_{m + k}^+ \),可得\( c \leq a_{m_0}^+ = x \),综上,可得\( c \)为\( B \)的下界,下面继续证明它是下确界。 \( \forall M \)为\( B \)的下界,有\( M \)为\( A \)的下界,进而有\( c \geq M \),即\( c \)为\( B \)的下确界。

    证毕。

  • 练习6.1.3的下极限版本

    令\( (a_n)_{n = m}^{\infty} \)为一个实数序列,令\( c \)为一个 拓展实数 ,令\( m' \geq m \)为一个整数。证明\( c \)为\( (a_n)_{n = m}^{\infty} \)的下极限当且仅当\( c \)为\( (a_n)_{n = m'}^{\infty} \)的下极限。

    证明:

    先证明一个引理,令\( (a_n)_{n = m}^{\infty} \)为一个实数序列,令\( c \)为一个实数,如果\( c \)为\( (a_n)_{n = m}^{\infty} \)的下极限,则\( -c \)为\( (-a_n)_{n = m}^{\infty} \)的上极限:

    如果\( c \)为\( (a_n)_{n = m}^{\infty} \)的下极限,则\( c = \sup(a_N^-)_{N = m}^{\infty} \),即\( c \)为\( \{ a_N^- : N \geq m \} \)的上确界,可得\( -c = \inf(\{ -a_N^- : N \geq m \}) \)。 \( \forall N \geq m, a_N^- = \inf(a_n)_{n = N}^{\infty} = \inf(\{ a_n : n \geq N \}) \),可得\( -a_N^- = \sup(\{ -a_n : n \geq N \}) = \sup(-a_n)_{n = N}^{\infty} \),结合前面的\( -c = \inf(\{ -a_N^- : N \geq m \}) \),可得\( -c \)为\( (-a_n)_{n = m}^{\infty} \)的上极限。

    下面继续回去证明命题。

    必要性:

    如果\( c \)为\( (a_n)_{n = m}^{\infty} \)的下极限,根据引理,可得\( -c \)为\( (-a_n)_{n = m}^{\infty} \)的上极限,根据练习6.1.3的上极限版本,有\( -c \)为\( (-a_n)_{n = m'}^{\infty} \)的上极限,再次根据引理,有\( c \)为\( (a_n)_{n = m'}^{\infty} \)的下极限。

    充分性:

    如果\( c \)为\( (a_n)_{n = m'}^{\infty} \)的下极限,根据引理,可得\( -c \)为\( (-a_n)_{n = m'}^{\infty} \)的上极限,根据练习6.1.3的上极限版本,有\( -c \)为\( (-a_n)_{n = m}^{\infty} \)的上极限,再次根据引理,有\( c \)为\( (a_n)_{n = m}^{\infty} \)的下极限。

    证毕。

  • 练习6.1.4的下极限版本

    令\( (a_n)_{n = m}^{\infty} \)为一个实数序列,令\( c \)为一个 拓展实数 ,令\( k \geq 0 \)为一个非负整数。证明\( c \)为\( (a_n)_{n = m}^{\infty} \)的下极限当且仅当\( c \)为\( (a_{n + k})_{n = m}^{\infty} \)的下极限。

    证明:

    必要性:

    如果\( c \)为\( (a_n)_{n = m}^{\infty} \)的下极限,根据练习6.1.3的下极限版本中证明的引理,可得\( -c \)为\( (-a_n)_{n = m}^{\infty} \)的上极限,根据练习6.1.4的上极限版本,有\( -c \)为\( (-a_{n + k})_{n = m}^{\infty} \)的上极限,再次根据练习6.1.3的下极限版本中证明的引理(把\( (a_{n + k})_{n = m}^{\infty} \)看成\( (a_n)_{n = m + k}^{\infty} \)就行),有\( c \)为\( (a_{n + k})_{n = m}^{\infty} \)的下极限。

    充分性:

    如果\( c \)为\( (a_{n + k})_{n = m}^{\infty} \)的下极限,根据练习6.1.3的下极限版本中证明的引理,可得\( -c \)为\( (-a_{n + k})_{n = m}^{\infty} \)的上极限,根据练习6.1.4的上极限版本,有\( -c \)为\( (-a_n)_{n = m}^{\infty} \)的上极限,再次根据练习6.1.3的下极限版本中证明的引理有\( c \)为\( (a_n)_{n = m}^{\infty} \)的下极限。

    证毕。

练习6.4.3

题目:

Prove parts 3, 4, 5, 6 of Proposition 6.4.12. (Hint: you can use earlier parts of the proposition to prove later ones.)

Proposition 6.4.12的内容:

Let \( (a_n)_{n = m}^{\infty} \) be a sequence of real numbers, let \( L^+ \) be the limit superior of this sequence, and let \( L^- \) be the limit inferior of this sequence (thus both \( L^+ \) and \( L^- \) are extended real numbers).

  1. For every \( x > L^+ \) , there exists an \( N \geq m \) such that \( a_n < x \) for all \( n \geq N \). (In other words, for every \( x > L^+ \), the elements of the sequence \( (a_n)_{n = m}^{\infty} \) are eventually less than \( x \).) Similarly, for every \( y < L^− \) there exists an \( N \geq m \) such that \( a_n > y \) for all \( n \geq N \).
  2. For every \( x < L^+ \), and every \( N \geq m \), there exists an \( n \geq N \) such that \( a_n > x \). (In other words, for every \( x < L^+ \), the elements of the sequence \( (a_n)_{n = m}^{\infty} \) exceed x infinitely often.) Similarly, for every \( y > L^− \) and every \( N \geq m \), there exists an \( n \geq N \) such that \( a_n < y \).
  3. We have \( \inf(a_n)_{n = m}^{\infty} \leq L^- \leq L^+ \leq \sup(a_n)_{n = m}^{\infty} \).
  4. If \( c \) is any limit point of \( (a_n)_{n = m}^{\infty} \), then we have \( L^- ≤ c ≤ L^+ \).
  5. If \( L^+ \) is finite, then it is a limit point of \( (a_n)_{n = m}^{\infty} \). Similarly, if \( L^- \) is finite, then it is a limit point of \( (a_n)_{n = m}^{\infty} \).
  6. Let \( c \) be a real number. If \( (a_n)_{n = m}^{\infty} \) converges to \( c \), then we must have \( L^+ = L^- = c \). Conversely, if \( L^+ = L^− = c \), then \( (a_n)_{n = m}^{\infty} \) converges to \( c \).
  • 命题3

    证明:

    因为\( L^+ = \inf(\{ a_N^+ : N \geq m \}) \),可得\( L^+ \leq a_m^+ = \sup(a_n)_{n = m}^{\infty} \)。

    因为\( L^- = \sup(\{ a_N^- : N \geq m \}) \),可得\( L^- \geq a_m^- = \inf(a_n)_{n = m}^{\infty} \)。

    还差证明\( L^- \leq L^+ \),假设\( L^+ < L^- \),则我们一定可以找到一个实数\( x \)满足\( L^+ < x < L^- \),具体方案如下:

    1. 如果\( L^+ \)和\( L^- \)都是实数,则\( x = (L^+ + L^-) / 2 \)满足要求。
    2. 如果\( L^- = + \infty \),此时:
      1. 如果\( L^+ \)是实数,则\( x = L^+ + 1 \)满足要求,
      2. 如果\( L^+ \)不是实数,则\( L^+ = -\infty \) (\( L^+ \)不可能是\( + \infty \),因为这样会出现\( + \infty < + \infty \)),此时随便取个实数\( x \)都满足条件。
    3. 最后,\( L^- \)不可能等于\( - \infty \),因为不存在拓展实数\( L^+ < - \infty \)。

    因为\( x > L^+ \),根据命题1,有\( \exists N_0 \geq m, \forall n \geq N_0, a_n < x \),因为\( x < L^- \),根据命题1,有\( \exists N_1 \geq m, \forall n \geq N_1, a_n > x \),取\( N = \max(N_0, N_1) \),则\( \forall n \geq N \),有\( a_n < x < a_n \),可得\( a_n < a_n \),矛盾,故假设不成立,有\( L^- \leq L^+ \)。

    证毕。

  • 命题4

    证明:

    假设\( c > L^+ \),则\( L^+ \)不可能是\( + \infty \),只可能是实数或者\( - \infty \),此时我们可以找到一个实数\( x \)满足\( L^+ < x < c \),方案如下:

    1. 如果\( L^+ = - \infty \),则\( x = c - 1 \)满足要求。
    2. 如果\( L^+ \)是实数,则\( x = (c + L^+) / 2) \)满足要求。

    因为\( x > L^+ \),故根据命题1,\( \exists N_0 \geq m, \forall n \geq N_0, a_n < x < c \),固定该\( N_0 \),令\( \epsilon_0 = (c - x) / 2 \),则\( \forall n \geq N_0 \), \( |a_n - c| = c - a_n > x - a_n + \epsilon_0 > \epsilon_0 \)。简而言之,\( \exists \epsilon_0 = (c - x) / 2, \exists N_0 \geq m, \forall n \geq N_0, |a_n - c| > \epsilon_0 \),即\( c \)不持续\( \epsilon_0 \)-附着于\( (a_n)_{n = m}^{\infty} \),这和\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点矛盾,故假设不成立,有\( c \leq L^+ \)。

    假设\( c < L^- \),则\( L^+ \)不可能是\( - \infty \),只可能是实数或者\( + \infty \),此时我们可以找到一个实数\( x \)满足\( c < x < L^- \),方案如下:

    1. 如果\( L^+ = + \infty \),则\( x = c + 1 \)满足要求。
    2. 如果\( L^- \)是实数,则\( x = (c + L^-) / 2) \)满足要求。

    因为\( x < L^- \),故根据命题1,\( \exists N_0 \geq m, \forall n \geq N_0, a_n > x > c \),固定该\( N_0 \),令\( \epsilon_0 = (x - c) / 2 \),则\( \forall n \geq N_0 \), \( |a_n - c| = a_n - c > a_n - x + \epsilon_0 > \epsilon_0 \)。简而言之,\( \exists \epsilon_0 = (x - c) / 2, \exists N_0 \geq m, \forall n \geq N_0, |a_n - c| > \epsilon_0 \),即\( c \)不持续\( \epsilon_0 \)-附着于\( (a_n)_{n = m}^{\infty} \),这和\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点矛盾,故假设不成立,有\( L^- \leq c \)。

    综上,有\( L^- \leq c \leq L^+ \)。

    证毕。

  • 命题5

    证明:

    先证明上极限的:

    \( \forall \epsilon > 0 \),因为\( L^+ + \epsilon > L^+ \),根据命题1,\( \exists N_0 \geq m, \forall n \geq N_0, a_n < L^+ + \epsilon \)。 \( \forall \epsilon > 0, \forall N \geq m \),如果\( N \geq N_0 \),此时因为\( L^+ - \epsilon < L^+ \),根据命题2,\( \exists n \geq N \geq N_0, a_n > L^+ - \epsilon \),此时还有\( a_n < L^+ + \epsilon \),可得\( |a_n - L^+| < \epsilon \),如果\( N < N_0 \),再次根据命题2,\( \exists n \geq N_0 \geq N, a_n > L^+ - \epsilon \),此时还有\( a_n < L^+ + \epsilon \),可得\( |a_n - L^+| < \epsilon \)。综上,\( \forall \epsilon > 0, \forall N \geq m, \exists n \geq N, |a_n - L^+| < \epsilon \),即\( L^+ \)为\( (a_n)_{n = m}^{\infty} \)的极限点。

    再证明下极限的:

    \( \forall \epsilon > 0 \),因为\( L^- - \epsilon < L^- \),根据命题1,\( \exists N_0 \geq m, \forall n \geq N_0, a_n > L^- - \epsilon \)。 \( \forall \epsilon > 0, \forall N \geq m \),如果\( N \geq N_0 \),此时因为\( L^- + \epsilon > L^- \),根据命题2,\( \exists n \geq N \geq N_0, a_n < L^- + \epsilon \),此时还有\( a_n > L^- - \epsilon \),可得\( |a_n - L^-| < \epsilon \),如果\( N < N_0 \),再次根据命题2,\( \exists n \geq N_0 \geq N, a_n < L^- + \epsilon \),此时还有\( a_n > L^- - \epsilon \),可得\( |a_n - L^-| < \epsilon \)。综上,\( \forall \epsilon > 0, \forall N \geq m, \exists n \geq N, |a_n - L^-| < \epsilon \),即\( L^- \)为\( (a_n)_{n = m}^{\infty} \)的极限点。

    证毕。

  • 命题6

    证明:

    必要性:

    如果\( (a_n)_{n = m}^{\infty} \)收敛于\( c \),则根据定理6.4.5,\( (a_n)_{n = m}^{\infty} \)有且仅有一个极限点\( c \)。因为\( (a_n)_{n = m}^{\infty} \)收敛,故它有界,即\( \exists M > 0 \in \mathbf{R}, \forall n \geq m, |a_n| \leq M \),即\( -M < a_n < M \),可得\( M \)和\( -M \)分别是它的上界和下界,且两者都是实数。因为\( \sup(a_n)_{n = m}^{\infty} = \sup(\{ a_n : n \geq m \}) \leq M \),根据命题3,有\( L^+ \leq \sup(a_n)_{n = m}^{\infty} \leq M \),即\( L^+ \)也为实数,同理可证\( L^- \)也为实数。根据命题5,如果\( L^+ \)为实数,则\( L^+ \)为\( (a_n)_{n = m}^{\infty} \)的极限点,此时假设\( L^+ \neq c \),则\( (a_n)_{n = m}^{\infty} \)至少有两个极限点,这和\( (a_n)_{n = m}^{\infty} \)有且仅有一个极限点矛盾,故\( L^+ = c \),同理可证\( L^- = c \)。

    综上,有\( L^+ = L^- = c \)。

    充分性:

    如果\( L^+ = L^- = c \),此时根据命题5,有\( c \)为\( (a_n)_{n = m}^{\infty} \)的极限点,下面直接证明\( (a_n)_{n = m}^{\infty} \)收敛于\( c \)。 \( \forall \epsilon > 0 \),因为\( c + \epsilon = L^+ + \epsilon > L^+ \),根据命题1,\( \exists N_0 \geq m, \forall n \geq N_0, a_n < c + \epsilon \)。因为\( c - \epsilon = L^- - \epsilon < L^- \),根据命题1,\( \exists N_1 \geq m, \forall n \geq N_1, a_n > c - \epsilon \)。取\( N = \max(N_0, N_1) \),可得\( \forall n \geq N \), \( a_n < c + \epsilon \)和\( a_n > c - \epsilon \)同时成立,进而有\( |a_n - c| \leq \epsilon \)。综上,\( \forall \epsilon > 0, \exists N \geq m, \forall n \geq N, |a_n - c| \leq \epsilon \)。

    证毕。

练习6.4.4

题目:

Prove Lemma 6.4.13.

Lemma 6.4.13的内容:

(Comparison principle). Suppose that \( (a_n)_{n = m}^{\infty} \) and \( (b_n)_{n = m}^{\infty} \) are two sequences of real numbers such that \( a_n \leq b_n \) for all \( n \geq m \). Then we have the inequalities

  1. \( \sup(a_n)_{n = m}^{\infty} \leq \sup(b_n)_{n = m}^{\infty} \)
  2. \( \inf(a_n)_{n = m}^{\infty} \leq \inf(b_n)_{n = m}^{\infty} \)
  3. \( \lim\sup\limits_{n \to \infty} a_n \leq \lim\sup\limits_{n \to \infty} b_n \)
  4. \( \lim\inf\limits_{n \to \infty} a_n \leq \lim\inf\limits_{n \to \infty} b_n \)
  • 命题1

    证明:

    \( \forall n \geq m, b_n \leq \sup(b_n)_{n = m}^{\infty} \),又\( a_n \leq b_n \),可得\( a_n \leq \sup(b_n)_{n = m}^{\infty} \),即\( \sup(b_n)_{n = m}^{\infty} \)为\( \{ a_n : n \geq m \} \)的上界,然而\( \sup(a_n)_{n = m}^{\infty} \)为\( \{ a_n : n \geq m \} \)上确界,可得\( \sup(a_n)_{n = m}^{\infty} \leq \sup(b_n)_{n = m}^{\infty} \)。

    证毕。

  • 命题2

    证明:

    \( \forall n \geq m, \inf(a_n)_{n = m}^{\infty} \leq a_n \),又\( a_n \leq b_n \),可得\( \inf(a_n)_{n = m}^{\infty} \leq b_n \),即\( \inf(a_n)_{n = m}^{\infty} \)为\( \{ b_n : n \geq m \} \)的下界,然而\( \inf(b_n)_{n = m}^{\infty} \)为\( \{ b_n : n \geq m \} \)下确界,可得\( \inf(a_n)_{n = m}^{\infty} \leq \inf(b_n)_{n = m}^{\infty} \)。

    证毕。

  • 命题3

    证明:

    假设\( \lim\sup\limits_{n \to \infty} b_n < \lim\sup\limits_{n \to \infty} a_n \),则我们可以找到一个实数\( x \) 满足\( \lim\sup\limits_{n \to \infty} b_n < x < \lim\sup\limits_{n \to \infty} a_n \),方案如下:

    1. 如果\( \lim\sup\limits_{n \to \infty} a_n = + \infty \),此时:
      1. 如果\( \lim\sup\limits_{n \to \infty} b_n \)为实数,则\( (\lim\sup\limits_{n \to \infty} b_n) + 1 \)满足要求。
      2. 如果\( \lim\sup\limits_{n \to \infty} b_n \)不为实数,则\( \lim\sup\limits_{n \to \infty} b_n = - \infty \) (不可能\( = + \infty \),因为这样会出现\( + \infty < + \infty \)),此时随便取一个实数\( x \)都满足要求。
    2. 如果\( \lim\sup\limits_{n \to \infty} a_n \)为实数,此时:
      1. 如果\( \lim\sup\limits_{n \to \infty} b_n \)为实数,则\( (\lim\sup\limits_{n \to \infty} a_n + \lim\sup\limits_{n \to \infty} b_n) / 2 \)满足要求。
      2. 如果\( \lim\sup\limits_{n \to \infty} b_n \)不为实数,则\( \lim\sup\limits_{n \to \infty} b_n = - \infty \) (不可能等于\( + \infty \),因为不存在实数\( > + \infty \)),此时\( (\lim\sup\limits_{n \to \infty} a_n) - 1 \)满足要求。

    因为\( \lim\sup\limits_{n \to \infty} b_n < x \),根据定理6.4.12的命题1,\( \exists N_0 \geq m, \forall n \geq N_0, b_n < x \),又\( a_n \leq b_n \),可得\( a_n < x \),综上,有\( x \)为\( \{ a_n : n \geq N_0 \} \)的上界,而\( a_{N_0}^+ \)为\( \{ a_n : n \geq N_0 \} \)的上确界,可得\( a_{N_0}^+ \leq x < \lim\sup\limits_{n \to \infty} a_n \)。由\( \lim\sup\limits_{n \to \infty} a_n = \inf(a_N^+)_{N = m}^{\infty} \),可得\( \lim\sup\limits_{n \to \infty} a_n \leq a_{N_0}^+ \),但这和前面得到的\( a_{N_0}^+ < \lim\sup\limits_{n \to \infty} a_n \)矛盾,故假设不成立,有\( \lim\sup\limits_{n \to \infty} a_n \leq \lim\sup\limits_{n \to \infty} b_n \)。

    证毕。

  • 命题4

    证明:

    假设\( \lim\inf\limits_{n \to \infty} b_n < \lim\inf\limits_{n \to \infty} a_n \),则我们可以找到一个实数\( x \) 满足\( \lim\inf\limits_{n \to \infty} b_n < x < \lim\inf\limits_{n \to \infty} a_n \),方案如下:

    1. 如果\( \lim\inf\limits_{n \to \infty} a_n = + \infty \),此时:
      1. 如果\( \lim\inf\limits_{n \to \infty} b_n \)为实数,则\( (\lim\inf\limits_{n \to \infty} b_n) + 1 \)满足要求。
      2. 如果\( \lim\inf\limits_{n \to \infty} b_n \)不为实数,则\( \lim\inf\limits_{n \to \infty} b_n = - \infty \) (不可能\( = + \infty \),因为这样会出现\( + \infty < + \infty \)),此时随便取一个实数\( x \)都满足要求。
    2. 如果\( \lim\inf\limits_{n \to \infty} a_n \)为实数,此时:
      1. 如果\( \lim\inf\limits_{n \to \infty} b_n \)为实数,则\( (\lim\inf\limits_{n \to \infty} a_n + \lim\inf\limits_{n \to \infty} b_n) / 2 \)满足要求。
      2. 如果\( \lim\inf\limits_{n \to \infty} b_n \)不为实数,则\( \lim\inf\limits_{n \to \infty} b_n = - \infty \) (不可能等于\( + \infty \),因为不存在实数\( > + \infty \)),此时\( (\lim\inf\limits_{n \to \infty} a_n) - 1 \)满足要求。

    因为\( x < \lim\inf\limits_{n \to \infty} a_n \),根据定理6.4.12的命题1, \( \exists N_0 \geq m, \forall n \geq N_0, x < a_n \),又\( a_n \leq b_n \),可得\( x < b_n \),综上\( x \)为\( \{ b_n : n \geq N_0 \} \)的下界,而\( b_{N_0}^- \)为\( \{ b_n : n \geq N_0 \} \)的下确界,可得\( b_{N_0}^- \geq x > \lim\inf\limits_{n \to \infty} b_n \)。由\( \lim\inf\limits_{n \to \infty} b_n = \sup(b_N^-)_{N = m}^{\infty} \),可得\( \lim\inf\limits_{n \to \infty} b_n \geq b_{N_0}^- \),但这和前面得到的\( b_{N_0}^- > \lim\inf\limits_{n \to \infty} b_n \)矛盾,故假设不成立,有\( \lim\inf\limits_{n \to \infty} a_n \leq \lim\inf\limits_{n \to \infty} b_n \)。

    证毕。

练习6.4.5

题目:

Use Lemma 6.4.13 to prove Corollary 6.4.14.

Corollary 6.4.14的内容:

(Squeeze test). Let \( (a_n)_{n = m}^{\infty}, (b_n)_{n = m}^{\infty} \) and \( (c_n)_{n = m}^{\infty} \) be sequences of real numbers such that \( a_n \leq b_n \leq c_n \) for all \( n \geq m \). Suppose also that \( (a_n)_{n = m}^{\infty} \) and \( (c_n)_{n = m}^{\infty} \) both converge to the same limit \( L \). Then \( (b_n)_{n = m}^{\infty} \) is also convergent to \( L \).

证明:

因为\( (a_n)_{n = m}^{\infty} \)和\( (c_n)_{n = m}^{\infty} \)收敛到\( L \),根据定理6.4.12的命题6,有\( \lim\sup\limits_{n \to \infty} a_n = \lim\inf\limits_{n \to \infty} a_n = L \),且\( \lim\sup\limits_{n \to \infty} b_n = \lim\inf\limits_{n \to \infty} b_n = L \)。因为\( \forall n \geq m, a_n \leq b_n \leq c_n \),由引理6.4.13,有\( L = \lim\sup\limits_{n \to \infty} a_n \leq \lim\sup\limits_{n \to \infty} b_n \leq \lim\sup\limits_{n \to \infty} c_n = L \),且\( L = \lim\inf\limits_{n \to \infty} a_n \leq \lim\inf\limits_{n \to \infty} b_n \leq \lim\inf\limits_{n \to \infty} c_n = L \),可得\( \lim\sup\limits_{n \to \infty} b_n = \lim\inf\limits_{n \to \infty} b_n = L \),此时根据定理6.4.12的命题6,有\( (b_n)_{n = m}^{\infty} \)收敛到\( L \)。

证毕。

练习6.4.6

题目:

Give an example of two bounded sequences \( (a_n)_{n = 1}^{\infty} \) and \( (b_n)_{n = 1}^{\infty} \) such that \( a_n < b_n \) for all \( n \geq 1 \), but that \( \sup(a_n)_{n = 1}^{\infty} \nless \sup(b_n)_{n = 1}^{\infty} \). Explain why this does not contradict Lemma 6.4.13.

解答:

令序列\( (a_n)_{n = 1}^{\infty} = 1 - (2 / n) \),令序列\( (b_n)_{n = 1}^{\infty} = 1 - (1 / n) \),则\( \forall n \geq 1, a_n < b_n \),但\( \sup(a_n)_{n = 1}^{\infty} = \sup(b_n)_{n = 1}^{\infty} = 1 \),这不违反引理6.4.13,因为引理6.4.13中仅说\( \sup(a_n)_{n = 1}^{\infty} \leq \sup(b_n)_{n = 1}^{\infty} \),这包括了\( \sup(a_n)_{n = 1}^{\infty} = \sup(b_n)_{n = 1}^{\infty} \)的可能性。

练习6.4.7

题目:

Prove Corollary 6.4.17. Is the corollary still true if we replace zero in the statement of this Corollary by some other number?

Corollary 6.4.17的内容:

(Zero test for sequences). Let \( (a_n)_{n = M}^{\infty} \) be a sequence of real numbers. Then the limit \( \lim_{n \to \infty} a_n \) exists and is equal to zero if and only if the limit \( \lim_{n \to \infty} |a_n| \) exists and is equal to zero.

证明:

必要性:

如果\( \lim_{n \to \infty} a_n = 0 \),则\( \forall \epsilon > 0, \exists N \geq M, \forall n \geq N, |a_n - 0| = |a_n| = 0 \),又\( ||a_n| - 0| = |a_n| \),可得\( ||a_n| - 0| = 0 \),可得\( \lim_{n \to \infty} |a_n| \)收敛于\( 0 \)。

充分性:

如果\( \lim_{n \to \infty} |a_n| \)收敛于\( 0 \),则\( \lim_{n \to \infty} -|a_n| \)也收敛于\( 0 \),此时因为\( -|a_n| \leq a_n \leq |a_n| \),根据推论6.4.14,有\( \lim_{n \to \infty} a_n = 0 \)。

证毕。

如果这里数字\( 0 \)改成其他数字,则推论不成立,反例:令序列\( (a_n)_{n = M}^{\infty} = 1 + (-1)^n \),则\( (|a_n|)_{n = M}^{\infty} = 1 + 1 = 2 \)收敛到\( 2 \),但是\( (a_n)_{n = 1}^{\infty} \)不收敛。

练习6.4.8

题目:

Let us say that a sequence \( (a_n)_{n = M}^{\infty} \) of real numbers has \( + \infty \) as a limit point iff it has no finite upper bound, and that it has \( - \infty \) as a limit point iff it has no finite lower bound. With this definition, show that \( \lim\sup_{n \to \infty} a_n \) is a limit point of \( (a_n)_{n = M}^{\infty} \), and furthermore that it is larger than all the other limit points of \( (a_n)_{n = M}^{\infty} \); in other words, the limit superior is the largest limit point of a sequence. Similarly, show that the limit inferior is the smallest limit point of a sequence. (One can use Proposition 6.4.12 in the course of the proof.)

证明:

记\( \lim\sup_{n \to \infty} a_n \)为\( L^+ \),\( \lim\inf{n \to \infty} a_n \)为\( L^- \)。

先证明\( L^+ \)的情况, \( L^+ \)的取值可能有三种情况:\( + \infty, - \infty \),一个实数,下面分别讨论:

  1. 如果\( L^+ = + \infty \),则根据定理6.4.12的命题3, \( L^+ \leq \sup(a_n)_{n = M}^{\infty} \),可得\( \sup(a_n)_{n = M}^{\infty} = + \infty \),即\( (a_n)_{n = M}^{\infty} \)没有有限上界,此时根据练习6.4.8的定义,有\( L^+ = + \infty \)为\( (a_n)_{n = M}^{\infty} \)的极限点。 \( \forall c \)为\( (a_n)_{n = M}^{\infty} \)的极限点, \( c \)的取值有三种情况\( + \infty, - \infty \),一个实数,这三种情况下,均有\( c \leq L^+ \),即\( L^+ \)为最大的极限点。

  2. 如果\( L^+ = - \infty \),则根据定理6.4.12的命题3, \( \inf(a_n)_{n = M}^{\infty} \leq L^+ \),可得\( \inf(a_n)_{n = M}^{\infty} = - \infty \),即\( (a_n)_{n = M}^{\infty} \)没有有限下界,此时根据练习6.4.8的定义,有\( L^+ = - \infty \)为\( (a_n)_{n = M}^{\infty} \)的极限点。 \( \forall c \)为\( (a_n)_{n = M}^{\infty} \)的极限点, \( c \)的取值有三种情况\( + \infty, - \infty \),一个实数:

    1. 如果\( c = + \infty \),根据练习6.4.8的定义,有\( \sup(a_n)_{n = M}^{\infty} = + \infty \),此时有\( \forall G \in \mathbf{R}, \forall N \geq M, \exists n \geq N, a_n > G \) (即不管你\( G \)取多大,\( N \)取什么值,我总能在\( N \)的右边,找到一个\( a_n > G \),这个很好证,假设它不成立,很容易得出它有有限上界的结论,从而产生矛盾),进一步可得\( \forall M' \geq M \),均有\( a_{M'}^+ = \sup(a_n)_{n = M'}^{\infty} = + \infty \) (这个也很容易证明,假设\( \sup(a_n)_{n = M'}^{\infty} = - \infty \) 或者\( = \)一个实数,根据前面的结论,可以找到一个\( a_n > \sup(a_n)_{n = M'}^{\infty} \),从而和\( \sup(a_n)_{n = M'}^{\infty} \)为上界产生矛盾),此时可得\( L^+ = \inf(a_N^+)_{N = M}^{\infty} = + \infty \),但这和\( L^+ = - \infty \)矛盾,故\( c = + \infty \)是不可能的。
    2. 如果\( c = - \infty \),此时有\( c \leq L^+ \)。
    3. 如果\( c = \)一个实数,则根据定理6.4.12的命题4,有\( c \leq L^+ \),但是不存在一个实数\( \leq L^+ = - \infty \)的,故\( c \)不可能是一个实数。

    综上,所有情况均有\( c \leq L^+ \),即\( L^+ \)为最大的极限点。

  3. 如果\( L^+ = \)一个实数,则根据定理6.4.12的命题5,有\( L^+ \)为\( (a_n)_{n = M}^{\infty} \)的极限点。 \( \forall c \)为\( (a_n)_{n = M}^{\infty} \)的极限点, \( c \)的取值有三种情况\( + \infty, - \infty \),一个实数:

    1. 如果\( c = + \infty \),根据练习6.4.8的定义,有\( \sup(a_n)_{n = M}^{\infty} = + \infty \),但前面说了,这意味着\( L^+ = + \infty \),和\( L^+ \)为实数矛盾,故\( c \)不可能\( = + \infty \)。
    2. 如果\( c = - \infty \),此时有\( c \leq L^+ \)。
    3. 如果\( c = \)一个实数,则根据定理6.4.12的命题4,有\( c \leq L^+ \)。

    综上,所有情况均有\( c \leq L^+ \),即\( L^+ \)为最大的极限点。

综上,所有情况下,均有\( L^+ \)为\( (a_n)_{n = M}^{\infty} \)的极限点,且\( \forall c \)为\( (a_n)_{n = M}^{\infty} \)的极限点,有\( c \leq L^+ \)。

下面证明\( L^- \)的情况, \( L^- \)的取值可能有三种情况:\( + \infty, - \infty \),一个实数,下面分别讨论:

  1. 如果\( L^- = + \infty \),则根据定理6.4.12的命题3,有\( L^- \leq \sup(a_n)_{n = M}^{\infty} \),可得\( \sup(a_n)_{n = M}^{\infty} = + \infty \),即\( (a_n)_{n = M}^{\infty} \)没有有限上界,此时根据练习6.4.8的定义,有\( L^- = + \infty \)为\( (a_n)_{n = M}^{\infty} \)的极限点。 \( \forall c \)为\( (a_n)_{n = M}^{\infty} \)的极限点, \( c \)的取值有三种情况\( + \infty, - \infty \),一个实数:

    1. 如果\( c = + \infty \),此时有\( L^- \leq c \)。
    2. 如果\( c = - \infty \),根据练习6.4.8的定义,有\( \inf(a_n)_{n = M}^{\infty} = - \infty \),此时类似\( L^+ \)的情况,易得\( \forall M' \geq M \),均有\( a_{M'}^- = \inf(a_n)_{n = M'}^{\infty} = - \infty \),此时可得\( L^- = \sup(a_N^-)_{N = M}^{\infty} = - \infty \),但这和\( L^- = + \infty \)矛盾,故\( c = - \infty \)是不可能的。
    3. 如果\( c = \)一个实数,则根据定理6.4.12的命题4,有\( c \geq L^- \),但是不存在一个实数\( \geq L^- = + \infty \)的,故\( c \)不可能是一个实数。

    综上,所有情况均有\( L^- \leq c \),即\( L^- \)为最小的极限点。

  2. 如果\( L^- = - \infty \),则根据定理6.4.12的命题3, \( \inf(a_n)_{n = M}^{\infty} \leq L^- \),可得\( \inf(a_n)_{n = M}^{\infty} = - \infty \),即\( (a_n)_{n = M}^{\infty} \)没有有限下界,此时根据练习6.4.8的定义,有\( L^- = - \infty \)为\( (a_n)_{n = M}^{\infty} \)的极限点。 \( \forall c \)为\( (a_n)_{n = M}^{\infty} \)的极限点, \( c \)的取值有三种情况\( + \infty, - \infty \),一个实数,这三种情况下,均有\( L^- \leq c \),即\( L^- \)为最大的极限点。

  3. 如果\( L^- = \)一个实数,则根据定理6.4.12的命题5,有\( L^- \)为\( (a_n)_{n = M}^{\infty} \)的极限点。 \( \forall c \)为\( (a_n)_{n = M}^{\infty} \)的极限点, \( c \)的取值有三种情况\( + \infty, - \infty \),一个实数:

    1. 如果\( c = + \infty \),此时有\( L^- \leq c \)。
    2. 如果\( c = - \infty \),根据练习6.4.8的定义,有\( \inf(a_n)_{n = M}^{\infty} = - \infty \),但前面说了,这意味着\( L^- = - \infty \),和\( L^- \)为实数矛盾,故\( c \)不可能\( = - \infty \)。
    3. 如果\( c = \)一个实数,则根据定理6.4.12的命题4,有\( L^- \leq c \)。

    综上,所有情况均有\( L^- \leq c \),即\( L^- \)为最大的极限点。

练习6.4.9

题目:

Using the definition in Exercise 6.4.8, construct a sequence \( (a_n)_{n = 1}^{\infty} \) which has exactly three limit points, at \( - \infty, 0, \) and \( + \infty \).

解答:

构造序列\( (a_n)_{n = 1}^{\infty} \),如果\( \exists k \in \mathbf{N} \),使得\( n = (3k + 0) + 1 \),(因为下标从\( 1 \)开始,所以得\( +1 \))则\( (a_n) = k \),如果\( \exists k \in \mathbf{N} \),使得\( n = (3k + 1) + 1 \),则\( (a_n) = -k \),如果\( \exists k \in \mathbf{N} \),使得\( n = (3k + 2) + 1 \),则\( (a_n) = 0 \) (注:3个为一组,\( k \)表示第几组,第\( 1 \)组为递增序列,没有上界,第\( 2 \)组为递减序列,没有下界,第\( 3 \)组为常数序列\( 0 \))。

我们需要避免重复赋值的问题,根据定理2.3.9, \( \exists k, r \in \mathbf{N}, 0 \leq r < 3 \),使得\( n - 1 = 3k + r \), \( \forall k', r' \in \mathbf{N}, 0 \leq r' < 3, n - 1 = 3k' + r' \),可得\( 3(k - k') = r' - r) \),进一步可得\( k - k' = (r' - r) / 3 \),但由于\( k - k' \)为整数,可得\( r' - r = 0 \),即\( r' = r \),回代可得\( k - k' = 0 \),即\( k = k' \),综上,\( n - 1 = 3k + r \)这样的表达式是唯一的,这意味着\( n = 3k + r + 1 \)这样的表达式也是唯一的,假设\( \exists k, k', r, r' \in \mathbf{N}, 0 \leq r, r' < 3, n = 3k + r + 1 = 3k' + r' + 1 \),则\( n - 1 = 3k + r = 3k' + r' \),根据前面的结论,有\( k = k', r = r' \),综上,不会出现重复赋值的问题。

很容易证明该序列没有上界,没有下界,故有\( + \infty \),\( - \infty \)两个极限点,也容易证明\( 0 \)是该序列的极限点。

下面证明\( 0 \)是该序列唯一的实数极限点,即该序列有且仅有上面三个极限点:假设\( c \)为\( (a_n)_{n = 1}^{\infty} \)的极限点,且\( c \neq 0 \),则\( \forall \epsilon > 0, \forall N \geq 1, \exists n \geq N, |a_n - c| \leq \epsilon \):

  1. \( a_n \)不可能等于\( 0 \),因为这样的话\( |a_n - c| = |c| \),此时如果\( \epsilon \)取\( 2|c| \),则\( |a_n - c| \)永远不满足\( \leq \epsilon \)。
  2. 如果\( \exists k \in \mathbf{N}, n_0 = (3k_0 + 0) + 1 \),则\( a_n = k_0 \),但我们知道随着\( n \)的增大,\( k \)是可以无限增大的,即它会逐步远离\( c \),具体的:\( \exists N \geq 1, N = (3k_1 + 0) + 1 \),且\( k_1 > c + \epsilon \),此时\( \forall n \geq N, n = (3k + 0) + 1 \),有\( k \geq k_1 \),从而\( a_n = k > c + \epsilon \),进而有\( |a_n - c| > \epsilon \)。综上,\( \exists N_0 \geq 1, \forall n \geq N_0 \),如果\( \exists k \in \mathbf{N}, a_n = (3k + 0) + 1 \),则\( |a_n - c| > \epsilon \),即存在一个\( N_0 \),在该\( N_0 \)之后,所有形如\( a_n = (3k + 0) + 1 \)都不满足\( |a_n - c| < \epsilon \)。
  3. 如果\( \exists k \in \mathbf{N}, n_0 = (3k_0 + 1) + 1 \),则\( a_n = -k_0 \),但我们知道随着\( n \)的增大,\( k \)是可以无限递减的,即它会逐步远离\( c \),具体的:\( \exists N \geq 1, N = (3k_1 + 1) + 1 \),且\( -k_1 < c - \epsilon \),此时\( \forall n \geq N, n = (3k + 1) + 1 \),有\( k \geq k_1 \),从而\( a_n = -k < c - \epsilon \),进而有\( |a_n - c| > \epsilon \)。综上,\( \exists N_1 \geq 1, \forall n \geq N_1 \),如果\( \exists k \in \mathbf{N}, a_n = (3k + 1) + 1 \),则\( |a_n - c| > \epsilon \),即存在一个\( N_1 \),在该\( N_1 \)之后,所有形如\( a_n = (3k + 1) + 1 \)都不满足\( |a_n - c| < \epsilon \)。

综上,\( a_n = 0 \)是不可能的,仅有可能\( a_n = k \)或\( a_n = -k \),但是 \( \forall \epsilon > 0 \),取\( N = \max(N_0, N_1) \)(上面得来的),可得\( \forall n \geq N \),所有形如\( a_n = (3k + 0) + 1 \)以及所有形如\( a_n = (3k + 1) + 1 \) 都不满足\( |a_n - c| < \epsilon \),故\( c \)不持续\( \epsilon \)-附着于\( (a_n)_{n = 1}^{\infty} \),这和\( c \)为\( (a_n)_{n = 1}^{\infty} \)的极限点矛盾,故不存在\( c \neq 0 \)为\( (a_n)_{n = 1}^{\infty} \)的极限点,即\( (a_n)_{n = 1}^{\infty} \)有且仅有上面三个极限点。

练习6.4.10

题目:

Let \( (a_n)_{n = N}^{\infty} \) be a sequence of real numbers, and let \( (b_m)_{m = M}^{\infty} \) be another sequence of real numbers such that each \( b_m \) is a limit point of \( (a_n)_{n = N}^{\infty} \). Let \( c \) be a limit point of \( (b_m)_{m = M}^{\infty} \). Prove that \( c \) is also a limit point of \( (a_n)_{n = N}^{\infty} \). (In other words, limit points of limit points are themselves limit points of the original sequence.)

证明:

因为\( c \)为\( (b_m)_{m = M}^{\infty} \)的极限点,故 \( \forall \epsilon > 0, \exists m \geq M, |b_m - c| \leq (\epsilon / 2) \),固定\( m \)和\( M \),因为\( b_m \)为\( (a_n)_{n = N}^{\infty} \)的极限点,故\( \forall N' \geq N, \exists n \geq N', |a_n - b_m| \leq (\epsilon / 2) \),又\( |b_m - c| \leq (\epsilon / 2) \),可得\( |a_n - c| \leq \epsilon \)。综上,\( \forall \epsilon > 0, \forall N' \geq N, \exists n \geq N', |a_n - c| \leq \epsilon \),即\( c \)为\( (a_n)_{n = N}^{\infty} \)的极限点(注意,上面我们仅用到固定的\( m \)和\( M \),虽然还有很多其他的\( M' \geq M \) 以及对应的\( m' \geq M' \)能用,但是我们仅需要得到\( c \)接近其中一个\( (a_n)_{n = N}^{\infty}\)的极限点的事实就行了,虽然这个似乎有点反常,好像没有充分利用所有的信息,但是实际上是信息给的过多了)。

证毕。

章节6.5

练习6.5.1

题目:

Show that \( \lim_{n \to \infty} 1 / n^q = 0 \) for any rational \( q > 0 \). (Hint: use Corollary 6.5.1 and the limit laws, Theorem 6.1.19.) Conclude that the limit \( \lim_{n \to \infty} n^q \) does not exist. (Hint: argue by contradiction using Theorem 6.1.19(5).)

证明:

因为\( q \in \mathbf{Q} \)且\( q > 0 \),故\( \exists a, b \in \mathbf{Z}, a > 0, b > 0 \),使得\( q = a / b \),根据推论6.5.1,有\( \lim_{n \to \infty} 1 / n^{1 / b} = 0 \),接下来,我们用数学归纳法,证明\( \lim_{n \to \infty} 1 / n^q = 0 \),令\( d = a - 1 \),对\( d \)进行归纳:

当\( d = 0 \)时,\( a = d + 1 = 1 \), \( \lim_{n \to \infty} 1 / n^q = \lim_{n \to \infty} 1 / n^{1 / b} = 0 \),即\( d = 0 \)时成立。

归纳假设当\( d = k \)时成立,即\( \lim_{n \to \infty} 1 / (n^{1 / b})^{k + 1} = 0 \),当\( d = k+\!+ \)时,\( a = d + 1 = k + 2 \), 此时\( \lim_{n \to \infty} 1 / n^q = \lim_{n \to \infty} 1 / n^{(k + 2) / b} = \lim_{n \to \infty} 1 / ((n^{1 / b})^{k + 1} \times (n^{1 / b})) = \lim_{n \to \infty} 1 / (n^{1 / b})^{k + 1} \times \lim_{n \to \infty} 1 / n^{1 / b} = 0 \times 0 = 0 \),即\( d = k+\!+ \)时成立,至此,归纳完毕,有\( \lim_{n \to \infty} 1 / n^q = 0 \)。

下面证明\( \lim_{n \to \infty} n^q \)不存在,假设\( \exists c \in \mathbf{R}, \lim_{n \to \infty} n^q = c \),则根据定理6.1.19的命题5,有\( \lim_{n \to \infty} 1 / n^q = 1 / c \neq 0 \),这和\( \lim_{n \to \infty} 1 / n^q = 0 \)矛盾,故假设不成立,\( \lim_{n \to \infty} n^q \)不存在。

证毕。

练习6.5.2

题目:

Prove Lemma 6.5.2. (Hint: use Proposition 6.3.10, Exercise 6.3.4, and the squeeze test.)

Lemma 6.5.2的内容:

Let \( x \) be a real number. Then the limit \( \lim_{n \to \infty} x^n \) exists and is equal to zero when \( |x| < 1 \), exists and is equal to \( 1 \) when \( x = 1 \), and diverges when \( x = −1 \) or when \( |x| > 1 \).

证明:

当\( |x| < 1 \)时:

  1. 如果\( x = 0 \),\( \forall n \geq 1, x^n = 0 \),故\( \lim_{n \to \infty} x^n = 0 \)。
  2. 如果\( x \neq 0 \),此时有\( 0 < |x| < 1 \),根据定理6.3.10,有\( \lim_{n \to \infty} |x|^n = 0 \),再根据推论6.4.17,有\( \lim_{n \to \infty} x^n = 0 \)。

综上,当\( |x| < 1 \)时,\( \lim_{n \to \infty} x^n = 0 \)。

当\( x = 1 \)时,\( \forall n \geq 1, x^n = 1 \),故\( \lim_{n \to \infty} x^n = 1 \)。

当\( x \leq -1 \)时,我们证明\( (x^n)_{n = 1}^{\infty} \)不是柯西序列,取\( \epsilon = 1 \),有\( \forall N \geq 1 \),取\( j = N, k = N + 1 \),因为\( x \leq -1 \),故\( |x^N| = |x|^N \geq 1^N = 1 \)以及\( 1 - x \geq 2 \),此时有\( |x^j - x^k| = |x^N - x^{N + 1}| = |x^N(1 - x)| = |x^N||1 - x| \geq 2 > \epsilon \),即\( (x^n)_{n = 1}^{\infty} \)不最终\( \epsilon \)-稳定,故\( (x^n)_{n = 1}^{\infty} \)不是柯西序列,进而有\( (x^n)_{n = 1}^{\infty} \)不收敛。

当\( |x| > 1 \)时,有\( x > 1 \)或\( x < -1 \),前面已经证了当\( x < -1 \)时,\( (x^n)_{n = 1}^{\infty} \)发散,我们仅需要考虑\( x > 1 \)的情况,如果\( x > 1 \),则根据练习6.3.4,有\( (x^n)_{n = 1}^{\infty} \)发散。

证毕。

练习6.5.3

题目:

Prove Lemma 6.5.3. (Hint: you may need to treat the cases \( x \geq 1 \) and \( x < 1 \) separately. You might wish to first use Lemma 6.5.2 to prove the preliminary result that for every \( \epsilon > 0 \) and every real number \( M > 0 \), there exists an \( n \) such that \( M^{1 / n} \leq 1 + \epsilon \).)

Lemma 6.5.3的内容:

For any \( x > 0 \), we have \( \lim_{n \to \infty} x^{1 / n} = 1 \).

证明:

我们先证明\( \forall \epsilon > 0, ((1 + \epsilon)^n)_{n = 1}^{\infty} \)无有限上界,假设\( ((1 + \epsilon)^n)_{n = 1}^{\infty} \)有有限上界,易证该序列单调递增,根据定理6.3.8,有\( ((1 + \epsilon)^n)_{n = 1}^{\infty} \)收敛,然而\( 1 + \epsilon > 1 \),根据引理6.5.2,有\( ((1 + \epsilon)^n)_{n = 1}^{\infty} \)发散,产生矛盾,故假设不成立,\( ((1 + \epsilon)^n)_{n = 1}^{\infty} \)无有限上界。

如果\( x \geq 1 \),则\( \forall \epsilon > 0 \),因为\( ((1 + \epsilon)^n)_{n = 1}^{\infty} \)无有限上界,故\( \exists n \geq 1, x \leq (1 + \epsilon)^n \),再根据引理5.6.6的命题4(还有由该引理其他命题得出的\( (y^n)^{1 / n} = y \)),有\( x^{1 / n} \leq 1 + \epsilon \),又\( x > 1 \),从而有\( x^{1 / n} \geq 1 \geq 1 - \epsilon \) (假设\( x^{1 / n} < 1 \),则\( x < 1^n = 1 \),矛盾),至此,可得\( |x^{1 / n} - 1| \leq \epsilon \)。综上可得,\( \lim_{n \to \infty} x^{1 / n} = 1 \)。

如果\( x < 1 \),则\( \forall \epsilon > 0 \),有\( \epsilon < 1 \)或\( \epsilon \geq 1 \),分开讨论:

  1. 如果\( \epsilon < 1 \),则\( 0 < 1 - \epsilon < 1 \),此时根据引理6.5.2,有\( \lim_{n \to \infty} (1 - \epsilon)^n = 0 \),故\( \exists n \geq 1, |(1 - \epsilon)^n - 0| = (1 - \epsilon)^n \leq x \),此时根据引理5.6.5的命题4,有\( 1 - \epsilon \leq x^{1 / n} \),又\( x < 1 \),故\( x^{1 / n} \leq 1 \leq 1 + \epsilon \) (假设\( x^{1 / n} > 1 \),则\( x > 1^n = 1 \),矛盾),至此,可得\( |x^{1 / n} - 1| \leq \epsilon \)。综上可得,\( \lim_{n \to \infty} x^{1 / n} = 1 \)。
  2. 如果\( \epsilon \geq 1 \),则任取\( 0 < \epsilon_0 < 1 \),根据前面的证明,有\( \exists n \geq 1, |x^{1 / n} - 1| \leq \epsilon_0 < \epsilon \),即\( \lim_{n \to \infty} x^{1 / n} = 1 \)。

综上,\( \forall x > 0 \),有\( \lim_{n \to \infty} x^{1 / n} = 1 \)。

证毕。

章节6.6

练习6.6.1

题目:

Prove Lemma 6.6.4.

Lemma 6.6.4的内容:

Let \( (a_n)_{n = 0}^{\infty} \), \( (b_n)_{n = 0}^{\infty} \), and \( (c_n)_{n = 0}^{\infty} \) be sequences of real numbers. Then \( (a_n)_{n = 0}^{\infty} \) is a subsequence of \( (a_n)_{n = 0}^{\infty} \). Furthermore, if \( (b_n)_{n = 0}^{\infty} \) is a subsequence of \( (a_n)_{n = 0}^{\infty} \), and \( (c_n)_{n = 0}^{\infty} \) is a subsequence of \( (b_n)_{n = 0}^{\infty} \), then \( (c_n)_{n = 0}^{\infty} \) is a subsequence of \( (a_n)_{n = 0}^{\infty} \).

证明自反性:

构造函数\( f: \mathbf{N} \to \mathbf{N} \),\( \forall n \in \mathbf{N}, f(n) = n \),此时\( \forall n \in \mathbf{N}, f(n + 1) = n + 1 > n = f(n) \),可得\( \forall n \in \mathbf{N}, a_n = a_{f(n)} = a_n \),故\( (a_n)_{n = 0}^{\infty} \)是 \( (a_n)_{n = 0}^{\infty} \)的子序列。

证毕。

证明传递性:

因为\( (b_n)_{n = 0}^{\infty} \)是\( (a_n)_{n = 0}^{\infty} \)的子序列,故存在严格递增函数\( f: \mathbf{N} \to \mathbf{N} \),使得\( b_n = a_{f(n)} \)。因为\( (c_n)_{n = 0}^{\infty} \)是\( (b_n)_{n = 0}^{\infty} \)的子序列,故存在严格递增函数\( g: \mathbf{N} \to \mathbf{N} \),使得\( c_n = b_{g(n)} \)。此时有\( c_n = b_{g(n)} = b_{f(g(n))} = b_{(f \circ g)(n)} \)。易证\( \forall n \in \mathbf{N}, f(g(n + 1)) > f(g(n)) \) (注:先证明下针对任意\( m > n \),有\( f(m) > f(n) \),这点很容易,对\( m - n - 1 \)进行数学归纳就行,然后我们有\( g(n + 1) > g(n) \),故可得\( f(g(n + 1)) > f(g(n)) \)),即\( (f \circ g)(n + 1) > (f \circ g)(n) \)。综上,可得\( (c_n)_{n = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列。

证毕。

练习6.6.2

题目:

Can you find two sequences \( (a_n)_{n = 0}^{\infty} \) and \( (a_n)_{n = 0}^{\infty} \) which are not the same sequence, but such that each is a subsequence of the other?

解答:

构造序列\( (a_n)_{n = 0}^{\infty} \),\( \forall n \geq 0, a_n = (-1)^n \)。构造序列\( (b_n)_{n = 0}^{\infty} \),\( \forall n \geq 0, b_n = (-1)^{n + 1} \) (不严格地,\( (a_n)_{n = 0}^{\infty} = 1, -1, 1, -1 \dots, (b_n)_{n = 0}^{\infty} = -1, 1, -1, 1 \dots \))。构造函数\( f: \mathbf{N} \to \mathbf{N}, \forall n \in \mathbf{N}, f(n) = n + 1 \),可得\( \forall n \geq 0, b_n = a_{f(n)}, a_n = b_{f(n)} \),又\( f \)为严格递增函数,有\( (a_n)_{n = 0}^{\infty} \)和\( (b_n)_{n = 0}^{\infty} \)互为子序列。

练习6.6.3

题目:

Let \( (a_n)_{n = 0}^{\infty} \) be a sequence which is not bounded. Show that there exists a subsequence \( (b_n)_{n = 0}^{\infty} \) of \( (a_n)_{n = 0}^{\infty} \) such that \( \lim_{n \to \infty} 1 / b_n \) exists and is equal to zero. (Hint: for each natural number \( j \), recursively introduce the quantity \( n_j := \min\{ n \in \mathbf{N} : |a_n| \geq j; n > n_{j − 1} \} \) (omitting the condition \( n > n_{j − 1} \) when \( j = 0 \)), first explaining why the set \( \{ n \in \mathbf{N} : |a_n| \geq j; n > n_{j − 1} \} \) is non-empty. Then set \( b_j := a_{n_j} \).)

证明:

首先证明\( \forall j \in \mathbf{N}, \{ n \in \mathbf{N} : |a_n| \geq j; n > n_{j − 1} \} \) 非空且\( n_j = \min\{ n \in \mathbf{N} : |a_n| \geq j; n > n_{j − 1} \} \)存在,使用数学归纳法证明:

当\( j = 0 \)时,\( |a_0| \geq j = 0 \),故\( \{ n \in \mathbf{N} : |a_n| \geq 0 \} \)非空,(注:j = 0时,忽略\( n > n_{j - 1} \)这个条件),此时\( n_0 = \min\{ n \in \mathbf{N} : |a_n| \geq 0 \} = 0 \) (因为\( 0 \)是最小的下标),即\( n = 0 \)时成立。

归纳假设当\( j = k \)时成立,即\( \{ n \in \mathbf{N} : |a_n| \geq k; n > n_{k − 1} \} \)非空且\( n_k \)存在,当\( n = k+\!+ \)时,取\( N = n_k + 1 \),因为\( (a_n)_{n = 0}^{\infty} \)无界,故\( \exists n_0 \geq N > n_k, |a_{n_0}| \geq k + 1 \) (反证法,假设\( \forall n \geq N, |a_n| < k + 1 \),即\( N \)后面的元素有界,又\( N \)前面仅有有限项,易得该序列有界,从而矛盾),即\( \{ n \in \mathbf{N} : |a_n| \geq k + 1; n > n_k \} \)非空,记该集合为\( A \),我们证明该集合有最小元,即\( n_{k + 1} \)存在:假设\( A \)没有最小元,此时任取\( m_0 \in A \),有\( \exists m_1 \in A, m_1 < m_0 \)(不然就有最小元了),把得到\( m_1 \)回代到\( m_0 \),按同样的理由,我们可以得到\( \exists m_2 \in A \),\( m_2 < m_1 \),如此反复,我们会得到一个无限递减的自然数序列,但是根据练习4.4.2,无限递减的自然数序列不存在,产生矛盾,故假设不成立,\( A \)有最小元,即\( n_{k + 1} \)存在。

至此,归纳完毕,有\( \{ n \in \mathbf{N} : |a_n| \geq j; n > n_{j − 1} \} \)非空且\( n_j \)存在,下面继续回去证明命题。

构造序列\( (b_j)_{j = 0}^{\infty} \),\( \forall j \in \mathbf{N} \),令\( b_j = a_{n_j} \),根据集合\( \{ n \in \mathbf{N} : |a_n| \geq j; n > n_{j − 1} \} \)中\( n > n_{j - 1} \)这个条件,可得\( n_j \)是严格单调递增的,即\( (b_j)_{j = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列。

现在证明\( (1 / b_j)_{j = 0}^{\infty} \)收敛到\( 0 \): \( \forall \epsilon > 0 \),根据练习5.4.4,\( \exists j \geq 1 \geq 0, 1 / j \leq \epsilon \),又\( |b_j| \geq j \),可得\( \forall j' \geq j, |b_{j'}| \geq j' \geq j \),进一步可得\( |1 / b_{j'}| = 1 / |b_{j'}| \leq 1 / j \leq \epsilon \)。简而言之,\( \forall \epsilon > 0, \exists j \geq 0, \forall j' \geq j, |1 / b_{j'}| \leq \epsilon \),即\( (1 / b_j)_{j = 0}^{\infty} \)收敛到\( 0 \)。

综上,存在序列\( (b_n)_{n = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列, \( (1 / b_n)_{n = 0}^{\infty} \)收敛到\( 0 \)。

证毕。

练习6.6.4

题目:

Prove Proposition 6.6.5. (Note that one of the two implications has a very short proof.)

Proposition 6.6.5的内容:

(Subsequences related to limits). Let \( (a_n)_{n = 0}^{\infty} \) be a sequence of real numbers, and let \( L \) be a real number. Then the following two statements are logically equivalent (each one implies the other):

  1. The sequence \( (a_n)_{n = 0}^{\infty} \) converges to \( L \).
  2. Every subsequence of \( (a_n)_{n = 0}^{\infty} \) converges to \( L \).

证明:

必要性:

如果\( (a_n)_{n = 0}^{\infty} \)收敛到\( L \):

此时,\( \forall (b_n)_{n = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列,有\( \exists f: \mathbf{N} \to \mathbf{N} \), \( \forall n \in \mathbf{N}, b_n = a_{f(n)}, f(n + 1) > f(n) \)。 \( \forall \epsilon > 0 \),因为\( (a_n)_{n = 0}^{\infty} \)收敛到\( L \),故\( \exists N \geq 0, \forall n \geq N, |a_n - L| \leq \epsilon \),易证\( \forall n \in \mathbf{N}, f(n) \geq n \),从而有\( f(N) \geq N \),故\( \forall n \geq N, f(n) \geq f(N) \geq N \),从而有\( |b_n - L| = |a_{f(n)} - L| \leq \epsilon \)。 \( \forall (b_n)_{n = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列,有\( (b_n)_{n = 0}^{\infty} \)收敛到\( L \)。

充分性:

如果\( \forall (b_n)_{n = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列,有\( (b_n)_{n = 0}^{\infty} \)收敛到\( L \):

此时,因为\( (a_n)_{n = 0}^{\infty} \)为自身的子序列,有\( (a_n)_{n = 0}^{\infty} \)收敛到\( L \)。

证毕。

练习6.6.5

Prove Proposition 6.6.6. (Hint: to show that (1) implies (2), define the numbers \( n_j \) for each natural numbers \( j \) by he formula \( n_j := \min\{ n > n_{j − 1} : |a_n − L| \leq 1 / j \} \), with the convention \( n_0 := 0 \), explaining why the set \( \{ n > n{j − 1} : |a_n − L| \leq 1 / j \} \) is non-empty. Then consider the sequence \( a_{n_j} \).)

Proposition 6.6.6的内容:

(Subsequences related to limit points). Let \( (a_n)_{n = 0}^{\infty} \) be a sequence of real numbers, and let \( L \) be a real number. Then the following two statements are logically equivalent.

  1. \( L \) is a limit point of \( (a_n)_{n = 0}^{\infty} \).
  2. There exists a subsequence of \( (a_n)_{n = 0}^{\infty} \) which converges to \( L \).

证明:

必要性:

如果\( L \)是\( (a_n)_{n = 0}^{\infty} \)的极限点:

证明\( \forall j \in \mathbf{N}, n_j = \min\{ n > n_{j − 1} : |a_n − L| \leq 1 / j \} \)存在(当然,这要求要么\( j = 0 \),要么\( \{ n > n_{j − 1} : |a_n − L| \leq 1 / j \} \)非空,不然空集没有最小元),使用数学归纳法证明:

当\( j = 0 \)时,根据约定\( n_j = n_0 = 0 \)存在。

归纳假设当\( j = k \)时成立,即\( n_j = \min\{ n > n_{k − 1} : |a_n − L| \leq 1 / k \} \) 当\( j = k+\!+ \)时,因为\( L \)是\( (a_n)_{n = 0}^{\infty} \)的极限点,故\( \exists n \geq n_k + 1 \geq n_k, |a_n - L| \leq 1 / (k + 1) \) (注:\( 1 / (k + 1) \)作为\( \epsilon \),\( n_k + 1 \)作为\( N \)),即 \( \{ n > n_k : |a_n − L| \leq 1 / (k + 1) \} \)非空,记该集合为\( A \),我们证明该集合有最小元,即\( n_{k + 1} \)存在:假设\( A \)没有最小元,此时任取\( m_0 \in A \),有\( \exists m_1 \in A, m_1 < m_0 \)(不然就有最小元了),把得到\( m_1 \)回代到\( m_0 \),按同样的理由,我们可以得到\( \exists m_2 \in A \), \( m_2 < m_1 \),如此反复,我们会得到一个无限递减的自然数序列,但是根据练习4.4.2,无限递减的自然数序列不存在,产生矛盾,故假设不成立,\( A \)有最小元,即\( n_{k + 1} \)存在。

至此,归纳完毕,有\( \forall j \in \mathbf{N}, n_j = \min\{ n > n_{j − 1} : |a_n − L| \leq 1 / j \} \)存在,继续回去证明命题。

构造序列\( (b_j)_{j = 0}^{\infty} \),\( \forall j \in \mathbf{N}, b_j = a_{n_j} \),下面证明该序列收敛于\( L \):\( \forall \epsilon > 0 \),根据练习5.4.4,\( \exists j \geq 1 \geq 0, 1 / j \leq \epsilon \),而\( |b_j - L| = |a_{n_j} - L| \leq 1 / j \leq \epsilon \),即\( (b_j)_{j = 0}^{\infty} \)收敛于\( L \)。

综上,存在序列\( (b_n)_{n = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列, \( (b_n)_{n = 0}^{\infty} \)收敛到\( (a_n)_{n = 0}^{\infty} \)的极限点\( L \)。

充分性:

如果存在序列\( (b_n)_{n = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列, \( (b_n)_{n = 0}^{\infty} \)收敛到某个数\( L \),我们要证明\( L \) 是\( (a_n)_{n = 0}^{\infty} \)的极限点:

因为\( (b_n)_{n = 0}^{\infty} \)为\( (a_n)_{n = 0}^{\infty} \)的子序列,故存在函数\( f: \mathbf{N} \to \mathbf{N} \), \( \forall n \in \mathbf{N}, b_n = a_{f(n)}, f(n + 1) > f(n) \)。

\( \forall \epsilon > 0 \),因为\( (b_n)_{n = 0}^{\infty} \)收敛到\( L \),故\( \exists N_0 \geq 0, \forall n \geq N_0, |b_n - L| \leq \epsilon \),针对\( \forall N \geq 0 \):

  1. 如果\( N \geq N_0 \),则\( f(N) \geq N \geq N_0 \),此时有\( |a_{f(N)} - L| = |b_N - L| \leq \epsilon \),简而言之,\( \exists n \geq N, |a_n - L| \leq \epsilon \),这里的\( n \)就是\( f(N) \)。
  2. 如果\( N < N_0 \),则\( f(N_0) \geq N_0 \),此时有\( |a_{f(N_0)} - L| = |b_{N_0} - L| \leq \epsilon \),简而言之,\( \exists n \geq N, |a_n - L| \leq \epsilon \),这里的\( n \)就是\( f(N_0) \)。

综上,\( L \)是\( (a_n)_{n = 0}^{\infty} \)的极限点。

证毕。

章节6.7

练习6.7.1

题目:

Prove the remaining components of Proposition 6.7.3.

Proposition 6.7.3的内容:

All the results of Lemma 5.6.9, which held for rational numbers \( q \) and \( r \), continue to hold for real numbers \( q \) and \( r \).

Lemma 5.6.9的内容:

Let \( x, y > 0 \) be positive reals, and let \( q, r \) be rationals.

  1. \( x^q \) is a positive real.
  2. \( x^{q + r} = x^qx^r \) and \( (x^q)^r = x^{qr} \).
  3. \( x^{-q} = 1 / x^q \).
  4. If \( q > 0 \), then \( x > y \) if and only if \( x^q > y^q \).
  5. If \( x > 1 \), then \( x^q > x^r \) if and only if \( q > r \). If \( x < 1 \), then \( x^q > x^r \) if and only if \( q < r \).

注:有些地方用了引理5.6.9的某个命题,我可能会没有显式写出来,应该不会给读者造成理解上的困难,特别注意下指数全为有理数的情况就行。

  • 命题1

    证明:

    \( q \)的取值有三种情况,\( q = 0, q < 0, q > 0 \),我们分别讨论:

    1. 如果\( q = 0 \),则\( q = \lim_{n \to \infty} 0 \),根据定义6.7.2,有\( x^q = \lim_{n \to \infty} x^0 = \lim_{n \to \infty} 1 = 1 > 0 \)。
    2. 如果\( q > 0 \),则\( \exists (q_n)_{n = 1}^{\infty} \)为正远离\( 0 \)的有理数序列, \( q = \lim_{n \to \infty} q_n \),由于\( (q_n)_{n = 1}^{\infty} \)正远离\( 0 \),故\( \exists c > 0, \forall n \geq 1, q_n \geq c \):
      1. 如果\( x > 1 \),则根据引理5.6.9的命题5,有\( \forall n \geq 1, x^{q_n} \geq x^c > 0 \),再根据推论5.4.10(以及定义6.7.2),有\( x^q = \lim_{n \to \infty} x^{q_n} \geq \lim_{n \to \infty} x^c = x^c > 0 \)。
      2. 如果\( x < 1 \),根据引理5.6.9的命题1,有\( \forall n \geq 1, x^{q_n} > 0 \),再根据定理5.4.9(以及定义6.7.2),有\( x^q = \lim_{n \to \infty} x^{q_n} \geq 0 \),还得排除\( x^q = 0 \)的可能性,我们有\( x^qx^{-q} = (\lim_{n \to \infty} x^{q_n})(\lim_{n \to \infty} x^{-q_n}) = \lim_{n \to \infty} x^{q_n}x^{-q_n} = 1 \),假设\( x^q = 0 \),则\( x^qx^{-q} = 0 \neq 1 \),矛盾,故\( x^q > 0 \)。
      3. 如果\( x = 1 \),则\( \forall n \geq 1, x^{q_n} = 1 \),根据定义6.7.2,有\( x^q = \lim_{n \to \infty} x^{q_n} = \lim_{n \to \infty} 1 = 1 > 0 \)。
    3. 如果\( q < 0 \),则\( \exists (q_n)_{n = 1}^{\infty} \)为负远离\( 0 \)的有理数序列, \( q = \lim_{n \to \infty} q_n \),根据前面的证明,有\( x^{-q} > 0 \),我们还有\( x^qx^{-q} = (\lim_{n \to \infty} x^{q_n})(\lim_{n \to \infty} x^{-q_n}) = \lim_{n \to \infty} x^{q_n}x^{-q_n} = 1 \),假设\( x^q \leq 0 \),则\( x^qx^{-q} \leq 0 \neq 1 \),矛盾,故\( x^q > 0 \)。

    综上,有\( x^q > 0 \)。

    证毕。

  • 命题5

    注1:我们先证明命题5,方便在命题2的证明中使用。

    注2:虽然把命题5的证明提前了,这会导致我们不能使用一些序号较前的命题的结论,但是这并不会造成多大的问题,因为指数为实数的\( x^r \)是通过指数为有理数\( x^q \)构造而来的,用不了别的命题的结论,我们大不了open the box。

    证明\( x > 1 \)的情况:

    必要性:

    如果\( x > 1 \)且\( x^q > x^r \):

    假设\( q = r \),则根据引理6.7.1,有\( x^q = x^r \),这和\( x^q > x^r \)矛盾,故\( q = r \)不可能。

    假设\( q < r \),则\( r - q > 0 \),此时\( \exists (d_n)_{n = 1}^{\infty} \)为正远离\( 0 \)的有理数序列, \( r - q = \lim_{n \to \infty} d_n \),即\( \exists c > 0, \forall n \geq 1, d_n \geq c \),因为\( x > 1 \),根据引理5.6.9的命题5,有\( x^{d_n} \geq x^c \),因为\( x > 1 \),根据引理5.6.9的命题4,可得\( x^c > 1^c = 1 \),综合可得\( x^{d_n} > 1 \),再根据推论5.4.10(以及定义6.7.2),有\( x^{r - q} = \lim_{n \to \infty} x^{d_n} \geq \lim_{n \to \infty} 1 = 1 \),即\( x^{r - q} \geq 1 \),两边同乘\( x^q \)(注:根据命题1,\( x^q > 0 \),故保序),可得\( x^r \geq x^q \),这和\( x^q > x^r \)矛盾,故\( q < r \)也不可能。

    综上,只剩下\( q > r \)这种可能性,根据序的三元论,有\( q > r \)成立。

    充分性:

    如果\( x > 1 \)且\( q > r \):

    假设\( x^q < x^r \),则根据必要性,有\( q < r \),这和\( q > r \)矛盾,故\( x^q < x^r \)不可能。

    假设\( x^q = x^r \),这里我们想直接得出\( q = r \)的结论,但是没有直接结论可以用,这里还是得证下,具体的:假设\( q > r \),则根据必要性,有\( x^q > x^r \),这和\( x^q = x^r \)矛盾,假设\( q < r \),则根据必要性,有\( x^q < x^r \),这和\( x^q = x^r \)矛盾,至此,根据序的三元论,有且仅有\( q = r \)成立,但是这和\( q > r \)矛盾,故\( x^q = x^r \)也不可能。

    综上,只剩下\( x^q > x^r \)这种可能性,根据序的三元论,有\( x^q > x^r \)成立。

    证毕。

    证明\( x < 1 \)的情况:

    必要性:

    如果\( x < 1 \)且\( x^q > x^r \):

    假设\( q = r \),则根据引理6.7.1,有\( x^q = x^r \),这和\( x^q > x^r \)矛盾,故\( q = r \)不可能。

    假设\( q > r \),则\( q - r > 0 \),此时\( \exists (d_n)_{n = 1}^{\infty} \)为正远离\( 0 \)的有理数序列, \( q - r = \lim_{n \to \infty} d_n \),即\( \exists c > 0, \forall n \geq 1, d_n \geq c \),因为\( x < 1 \),根据引理5.6.9的命题5,有\( x^{d_n} \leq x^c \),因为\( x < 1 \),根据引理5.6.9的命题4,可得\( x^c < 1^c = 1 \),综合可得\( x^{d_n} < 1 \),再根据推论5.4.10(以及定义6.7.2),有\( x^{q - r} = \lim_{n \to \infty} x^{d_n} \leq \lim_{n \to \infty} 1 = 1 \),即\( x^{q - r} \leq 1 \),两边同乘\( x^r \)(注:根据命题1,\( x^q > 0 \),故保序),可得\( x^q \leq x^r \),这和\( x^q > x^r \)矛盾,故\( q > r \)也不可能。

    综上,只剩下\( q < r \)这种可能性,根据序的三元论,有\( q < r \)成立。

    充分性:

    如果\( x < 1 \)且\( q < r \):

    假设\( x^q < x^r \),则根据必要性,有\( q > r \),这和\( q < r \)矛盾,故\( x^q < x^r \)不可能。

    假设\( x^q = x^r \),这里我们想直接得出\( q = r \)的结论,但是没有直接结论可以用,这里还是得证下(前面\( x > 1 \)的情况下证过类似的,不过不能直接用,因为那里的证明仅适用于\( x > 1 \)),具体的:假设\( q > r \),则根据必要性,有\( x^q < x^r \),这和\( x^q = x^r \)矛盾,假设\( q < r \),则根据必要性,有\( x^q > x^r \),这和\( x^q = x^r \)矛盾,至此,根据序的三元论,有且仅有\( q = r \)成立,但是这和\( q < r \)矛盾,故\( x^q = x^r \)也不可能。

    综上,只剩下\( x^q > x^r \)这种可能性,根据序的三元论,有\( x^q > x^r \)成立。

    证毕。

  • 命题2

    注1:文中已经证明了\( x^{q + r} = x^qx^r \),我们仅需要证明\( (x^q)^r = x^{qr} \)。

    注2:作者在博客的评论中给了如下的提示:“Approach the problem in stages, for instance by first establishing the case when \( q \) is real and \( r \) is rational, or vice versa.",但是证明似乎还是没那么简单,我还是用到了命题5。

    我们首先证明一个引理, \( \forall q \in \mathbf{R}, r \in \mathbf{Q} \),有\( (x^q)^r = x^{qr} \):

    因为\( q \in \mathbf{R} \),故\( \exists (q_n)_{n = 1}^{\infty} \)为有理数序列, \( q = \lim_{n \to \infty} q_n \),根据定义6.7.2以及定理5.6.9的命题2,有左边 = \( (x^q)^r = \lim_{n \to \infty} (x^{q_n})^r = \lim_{n \to \infty} x^{q_nr} \),又\( (q_nr)_{n = 1}^{\infty} \)收敛到\( qr \)(注:\( r \)是有理数),根据定义6.7.2,有右边 = \( x^{qr} = \lim_{n \to \infty} x^{q_nr} \),左边 = 右边。

    接下来回去证明命题,即\( \forall q, r \in \mathbf{R} \),有\( (x^q)^r = x^{qr} \):

    因为\( q \in \mathbf{R} \),故\( \exists (q_n)_{n = 1}^{\infty} \)为有理数序列, \( q = \lim_{n \to \infty} q_n \)。因为\( r \in \mathbf{R} \),故\( \exists (r_n)_{n = 1}^{\infty} \)为有理数序列, \( r = \lim_{n \to \infty} r_n \)。此时,根据定义6.7.2以及刚才证明的引理,有左边 = \( (x^q)^r = \lim_{n \to \infty} (x^q)^{r_n} = \lim_{n \to \infty} x^{qr_n} \),右边 = \( x^{qr} = \lim_{n \to \infty} x^{q_nr_n} \),为了证明左边 = 右边,我们仅需要证明\( \lim_{n \to \infty} x^{(q - q_n)r_n} = 1 \),因为根据文中已经证明的\( x^{q + r} = x^qx^r \)以及极限的乘法运算法则,有\( (\lim_{n \to \infty} x^{(q - q_n)r_n})(\lim_{n \to \infty} x^{q_nr_n}) = \lim_{n \to \infty} x^{qr_n} \),此时如果\( \lim_{n \to \infty} x^{(q - q_n)r_n} = 1 \),可得\( \lim_{n \to \infty} x^{q_nr_n} = \lim_{n \to \infty} x^{qr_n} \),即左边 = 右边。

    \( \forall \epsilon > 0 \),根据引理6.5.3,有 \( \lim_{k \to \infty} x^{1 / k} = 1 \),可得\( (x^{1 / k})_{k = 1}^{\infty} \)最终\( \epsilon \)-接近\( 1 \),即\( \exists K_0 \geq 1, \forall k \geq K_0 \),有\( x^{1 / k} \) \( \epsilon \)-接近\( 1 \);根据极限的倒数运算法则,有\( \lim_{k \to \infty} x^{-(1 / k)} = 1 \),可得\( (x^{-(1 / k)})_{k = 1}^{\infty} \)也最终\( \epsilon \)-接近\( 1 \),即\( \exists K_1 \geq 1, \forall k \geq K_0 \),有\( x^{-(1 / k)} \) \( \epsilon \)-接近\( 1 \);取\( K = \max(K_0, K_1) \),有\( x^{1 / K} \)和\( x^{-(1 / K)} \)均\( \epsilon \)-接近\( 1 \);因为\( \lim_{n \to \infty} q = q \)(注:常数序列,每个元素都是实数\( q \),而不是有理数), \( \lim_{n \to \infty} q_n = q, \lim_{n \to \infty} r_n = r \),根据极限的减法和乘法运算法则,有\( \lim_{n \to \infty} (q - q_n)r_n = 0 \),可得序列\( ((q - q_n)r_n)_{k = 1}^{\infty} \)最终\( 1 / K \)-接近\( 0 \),即\( \exists N \geq 1, \forall n \geq N, -(1 / K) \leq (q - q_n)r_n \leq 1 / K \),根据命题5,可得\( x^{-(1 / K)} \leq x^{(q - q_n)r_n} \leq x^{1 / K} \)或 \( x^{-(1 / K)} \geq x^{(q - q_n)r_n} \geq x^{1 / K} \)(取决于\( x > 1 \)还是\( x < 1 \)),再根据定理4.3.7的命题6,有\( x^{(q - q_n)r_n} \)也\( \epsilon \)-接近\( 1 \)(注意:是\( \forall n \geq N \)都满足),至此可得\( \lim_{n \to \infty} x^{(q - q_n)r_n} = 1 \),也就有左边 = 右边了,即命题成立。

  • 命题3

    证明:

    因为\( q \in \mathbf{R} \),故\( \exists (q_n)_{n = 1}^{\infty} \)为有理数序列, \( q = \lim_{n \to \infty} q_n \),根据定义6.7.2,有\( x^q = \lim_{n \to \infty} x^{q_n} \),以及\( x^{-q} = \lim_{n \to \infty} x^{-q_n} = \lim_{n \to \infty} 1 / x^{q_n} \),根据极限的除法运算法则(或者倒数),有 \( x^{-q} = \lim_{n \to \infty} 1 / x^{q_n} = (\lim_{n \to \infty} 1) / (\lim_{n \to \infty} x^{q_n}) = 1 / x^q \)。

    证毕。

  • 命题4

    证明:

    必要性:

    如果\( q > 0 \)且\( x > y \):

    因为\( q \in \mathbf{R} \),故\( \exists (q_n)_{n = 1}^{\infty} \)为有理数序列, \( q = \lim_{n \to \infty} q_n \),根据定义6.7.2,有\( x^q = \lim_{n \to \infty} x^{q_n} \)以及\( y^q = \lim_{n \to \infty} y^{q_n} \),故\( x^q - y^q = \lim_{n \to \infty} (x^{q_n} - y^{q_n}) \),根据引理5.6.9的命题4,有\( \forall n \geq 1, x^{q_n} > y^{q_n} \),可得\( x^{q_n} - y^{q_n} > 0 \),此时根据定理5.4.9,有\( x^q - y^q = \lim_{n \to \infty} (x^{q_n} - y^{q_n}) \geq 0 \),即\( x^q \geq y^q \),还得排除\( x^q = y^q \)的可能性,假设\( x^q = y^q \),此时因为\( q \neq 0 \),故\( 1 / q \)为实数,可得\( (x^q)^{1 / q} = (y^q)^{1 / q} \),根据命题2,可得左边 = \( (x^q)^{1 / q} = x^{q(1 / q)} = x^1 = x \),右边 = \( (y^q)^{1 / q} = y^{q(1 / q)} = y^1 = y \),因为左边 = 右边,故\( x = y \),然而这和\( x > y \)矛盾,故\( x^q = y^q \)不可能,有\( x^q > y^q \)。

    充分性:

    如果\( q > 0 \)且\( x^q > y^q \):

    假设\( x < y \),则根据必要性,有\( x^q < y^q \),这和\( x^q > y^q \)矛盾,故\( x < y \)不可能。

    假设\( x = y \),则\( x^q = y^q \),这和\( x^q > y^q \)矛盾,故\( x = y \)也不可能。

    综上,只剩下\( x > y \)这种可能性,根据序的三元论,有\( x > y \)成立。

    证毕。